Геофизические исследования: статья

ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ ВАРИАЦИЙ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ПОЧВЫ В ЗАВИСИМОСТИ ОТ НАЛИЧИЯ КОРНЕЙ
Д. ДЖИАМБАСТИАНИ1,2,3
Э. ГУАСТИНИ4
Ф. ПРЕТИ4,3
Д. ЧЕНСИНИ5
1 CNR-IBE, Institute of Bioeconomy, National Research Council

2 Bluebiloba Startup Innovativa SRL

3 FORTECH - DAGRI Joint Laboratory - Innovative technologies for the sustainable forestry management

4 DAGRI, Department of Science and Technology of Agriculture, Food, Environment and Forestry, Флорентийский университет

5 GEORISORSE ITALIA SAS
Журнал: Геофизические исследования
Том: 22
Номер: 2
Год: 2021
Страницы: 46-61
УДК: 550.3 +581.1
DOI: 10.21455/gr2021.2-3
Ключевые слова: плотность корней, геофизика, водонасыщенность, косвенное обнаружение, электроразведка
Аннотация: Знание о распределении корневой системы растений играет важную роль в изучении устойчивости склонов, поскольку этот фактор определяет циркуляцию подземных вод и обеспечивает повышение таких геотехнических свойств почвы, как сила сцепления и угол трения. Опубликованные ранее исследования о применении in situ электротомографии демонстрируют, как наличие корней влияет на измеряемые значения удельного сопротивления почвы. Это подтверждает возможность проведения электротомографических изысканий, направленных на оценку плотности корней в почве косвенным и неинвазивным способом. Настоящее исследование выполнялось в лабораторных условиях на искусственных образцах, и было направлено на поиск корреляции между вариациями удельного сопротивления и различными контролируемыми факторами, предположительно влияющими на результаты экспериментов, среди которых влажность, насыпная плотность, наличие инородных тел. Образцы изготавливались из глинисто-суглинистой почвы, взятой из Каракки ( Quaracchi , Флоренция, Италия), в экспериментальном еловом лесу ( Picea abies ), принадлежащем Scuola di Agraria Università degli Studi di Firenze. Указанное место впервые было выбрано для электротомографических исследований. Почва предварительно была высушена в лабораторной печи, просеяна через сито с размером ячеек 2 мм, после чего без уплотнения помещена в лексановый контейнер размерами 30´20´20 см. При проведении эксперимента двенадцать железных электродов помещались в образец по четыре в ряд на глубину 2, 6 и 13 см. Удельное сопротивление измерялось с помощью аппаратуры Syscal R2 по схеме Веннера. Присутствие корней имитировалось вставкой бамбуковых палочек, выбранных за простую геометрию и плотность, близкую к плотности корней. Максимальное количество палочек, используемых в ходе эксперимента, составило 48 штук. Измерения сопротивления проводились регулярно в течение длительного периода времени с контролем естественных колебаний влажности (испарения) и насыпной плотности (уплотнения). Первые результаты показали увеличение удельного сопротивления с уменьшением средней влажности почвы и увеличением насыпной плотности. Наличие корней при равных условиях влечет за собой более высокие значения удельного сопротивления почвы, которое, на первый взгляд, экспоненциально зависит от влажности.
Список литературы: Aizebeokhai A.P., Olayinka A.I., Anomaly effects of orthogonal paired-arrays for 3D geoelectrical resistivity imaging, Environmental Earth Sciences, 2011, vol. 64, no. 8, pp. 2141-2149. DOI: 10.1007/s12665-011-1041-9

Alekseev I., Kostecki J., Abakumov E., Vertical electrical resistivity sounding (VERS) of tundra and forest tundra soils of Yamal region, International Agrophysics, 2017, vol. 31, pp. 1-8. DOI: 10.1515/intag-2016-0037

Amato M., Basso B., Celano G., Bitella G., Morelli G., Rossi R., In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging, Tree Physiology, 2008, vol. 28, no. 10, pp. 1441-1448. DOI: 10.1093/treephys/28.10.1441

Amato M., Rossi R., Bitella G., Lovelli S., Multielectrode geoelectrical tomography for the quantification of plant roots, Italian Journal of Agronomy, 2010, vol. 5, no. 3, pp. 257-263. DOI: 10.4081/ija.2010.257

Attia al Hagrey S., Geophysical imaging of root-zone, trunk, and moisture heterogeneity, J. Exp. Bot., 2007, vol. 58, pp. 839-854. DOI:10.1093/jxb/erl237

Batayneh A.T., Al-Diabat A.A., Application of a two-dimensional electrical tomography technique for investigating landslides along the Amman-Dead Sea highway, Jordan, Environmental Geology, 2002, vol. 42, no. 4, pp. 399-403. DOI: 10.1007/s00254-002-0543-x

Bischetti G.B., Chiaradia E.A., Epis T., Morlotti E., Root cohesion of forest species in the Italian Alps, Plant and Soil, 2009, vol. 324, no. 1, pp. 71-89. DOI: 10.1007/s11104-009-9941-0

Cassiani G., Ursino N., Deiana R., Vignoli G., Boaga J., Rossi M., Perri M.T., Blaschek M., Duttmann R., Meyer S., Ludwig R., Soddu A., Dietrich P., Werban U., Noninvasive Monitoring of Soil Static Characteristics and Dynamic States: A Case Study Highlighting Vegetation Effects on Agricultural Land, Vadose Zone Journal, 2012, vol. 11, no. 3, Article ID: vzj2011.0195. DOI: 10.2136/vzj2011.0195

Chirico G.B., Borga M., Tarolli P., Rigon R., Preti F., Role of Vegetation on Slope Stability under Transient Unsaturated Conditions, Procedia Environ. Sci., 2013, vol. 19, pp. 932-941. DOI: 10.1016/j.proenv.2013.06.103

Giambastiani Y., Preti F., Errico A., Sani L., On the tree stability: pulling tests and modelling to assess the root anchorage, Procedia Environ. Sci. Eng. Manag., 2017, vol. 4, no. 4, pp. 207-218.

González-Ollauri A., Mickovski S.B., Hydrological effect of vegetation against shallow landslides: a technical approach, Geotech. Eng. Infrastruct. Dev., 2015, vol. 2, pp. 1753-1758, DOI: 10.1680/ecsmge.60678

Herman R., An introduction to electrical resistivity in geophysics, Am. J. Phys., 2001, vol. 69, pp. 943-952. DOI: 10.1119/1.1378013

Isaev V., Kotov P., Sergeev D., Technogenic Hazards of Russian North Railway, in Transportation Soil Engineering in Cold Regions, Singapore: Springer, 2020, vol. 1, pp. 311-320. DOI: 10.1007/978-981-15-0450-1_32

Kaznacheev P.A., Popov I.Y., Modin I.N., Zhostkov R.A., Application of Independent Finite Element Modeling for Estimating the Effect of Simplest Landforms on Results of Inversion of Electrical Resistivity Tomography Data (Example of a Trench with the Triangular Cross-Section), Seismic Instruments, 2020, vol. 56, no. 5, pp. 531-539. DOI: 10.3103/S0747923920050084

Kulikov V.A., Kaminsky A.E., Yakovlev A.G., Combined inversion of electric resistivity tomography and magnetotelluric sounding for solving tasks of ore geophysics, Geofizicheskie issledovaniya (Geophysical research), 2017, vol. 18, no. 3, pp. 27-44. [In Russian]. DOI: 10.21455/gr2017.3-3

Lebedeva L.S., Bazhin K.I., Khristoforov I.I., Abramov A.A., Pavlova N.A., Efremov V.S., Ogone-rov V.V., Tarbeeva A.M., Fedorov M.P., Nesterova N.V., Makarieva O.M., Suprapermafrost subaerial taliks, central Yakutia, Shestakovka River basin, Earth’s Cryosph., 2019, vol. 23, no. 1, pp. 40-50. DOI: 10.21782/KZ1560-7496-2019-140-50

Liese W., Anatomy and properties of bamboo, in Proceedings of the International Bamboo Workshop, 1985, pp. 196-208.

Mary B., Peruzzo L., Boaga J., Schmutz M., Wu Y., Hubbard S.S., Cassiani G., Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method, Hydrol. Earth Syst. Sci., 2018, vol. 22, pp. 5427-5444. DOI: 10.5194/hess-22-5427-2018

Morris W., Moreno E., Sagues A., Practical evaluation of resistivity of concrete in test cylinders using a Wenner array probe, Cement and Concrete Research, 1996, vol. 26, no. 4, pp. 551-556.

Nassereddine M., Rizk J., Nasserddine G., Soil Resistivity Data Computations; Single and Two - Layer Soil Resistivity Structure and Its Implication on Earthing Design, International Scholarly and Scientific Research & Innovation, 2013, vol. 7, no. 1, pp. 35-40. DOI: 10.1109/ciced.2018.8592188

Nemtsova O., Zhurbin I., Zlobina A., Vector analysis of pole-pole array for determining the 3D boundary of object, Near Surface Geophysics, 2019, vol. 17, no. 5, pp. 563-575. DOI: 10.1002/nsg.12065

Okpoli C., Sensitivity and Resolution Capacity of Electrode Configurations, Int. J. Geophys., 2013, Article ID: 608037, pp. 1-15.

Pozdnyakov A., Pozdnyakova L., Electrical fields and soil properties, in 17 World Congress of Soil Science, Symposium no. 53, Symposium A Quarterly Journal In Modern Foreign Literatures, 2002, paper no. 1558., pp. 1-11.

Preti F., Petrone A., Soil bio-engineering for watershed management and disaster mitigation in Ecuador: a short-term species suitability test, iForest - Biogeosciences and Forestry, 2013, vol. 6, no. 2, pp. 95-99. DOI: 10.3832/ifor0636-006

Rao S., Lesparre N., Orozco A.F., Wagner F., Javaux M., Imaging plant responses to water deficit using electrical resistivity tomography, Plant and Soil, 2020, vol. 454, pp. 261-281. DOI: 10.1007/s11104-020-04653-7

Reynolds J.M., An Introduction to Applied and Environmental Geophysics, Wiley, 1997.

Robinson J.L., Slater L.D., Schäfer K.V.R., Evidence for spatial variability in hydraulic redistribution within an oak-pine forest from resistivity imaging, Journal of Hydrology, 2012, vol. 430-431, pp. 69-79. DOI: 10.1016/j.jhydrol.2012.02.002.

Rossi R., Amato M., Bitella G., Bochicchio R., Ferreira Gomes J.J., Lovelli S., Martorella E., Favale P., Electrical resistivity tomography as a non-destructive method for mapping root biomass in an orchard, European Journal of Soil Science, 2011, vol. 62, no. 2, pp. 206-215. DOI: 10.1111/j.1365-2389.2010.01329.x

Samouëlian A., Cousin I., Tabbagh A., Bruand A., Richard G., Electrical resistivity survey in soil science: A review, Soil Tillage Res., 2005, vol. 83, pp. 173-193. DOI: 10.1016/j.still.2004.10.004

Schwarz M., Cohen D., Or D., Root-soil mechanical interactions during pullout and failure of root bundles, Journal of Geophysical Research: Earth Surface, 2010, vol. 115, no. 4, pp. 1-19. DOI: 10.1029/2009JF001603

Simakov A., Vakulenko S., Politcina A., Ivanov P., Rusakov E., Marchenko M., Shustov N., Efficiency Evaluation of High-Resolution Seismic; Electrical Resistivity Tomography and Electromagnetic Surveys on Rivers, Based on Modelling Studies, in Engineering and Mining Geophysics. European Association of Geoscientists & Engineers, 2020, vol. 2020, no. 1, pp. 1-12.

Skvortsova E.B., Shein E.V., Abrosimov K.N., Gerke K.M., Korost D.V., Romanenko K.A., Belokhin V.S., Dembovetskii A.V., Tomography in soil science, Byulleten Pochvennogo instituta im. V.V. Dokuchaeva, 2016, vol. 86, pp. 28-34. DOI: 10.35595/2414-9179-2020-4-26-131-146

Tiapkin O.K., Lozovyi A.L., Burlakova A.O., Pihulevskyi P.H., Geoinformation Support of Increase of Efficiency of Soil Cleaning from Petroleum Pollution, in 18th International Conference on Geoinformatics-Theoretical and Applied Aspects. European Association of Geoscientists & Engineers, 2019, vol. 2019, no. 1, pp. 1-5.

Zenone T., Morelli G., Teobaldelli M., Fischanger F., Matteucci M., Sordini M., Armani A., Ferrè C., Chiti T., Seufert G., Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations, Functional Plant Biology, 2008, vol. 35, no. 10, pp. 1047-1058. DOI: 10.1071/FP08062