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Abstract. In modern models of geophysical fluid dynamics, the gravitational field is usually taken uniform and 

defined by the single parameter. It is known, however, that the average gravitational force at the earth’s surface 

is superimposed upon by a broad spectrum of gravitational force anomalies (GFAs). This is due mainly to inho-

mogeneities of the distribution of mass in the Earth’s crust. Variations in the gravitational force are certainly 

very small in magnitude compared to the average value. It is important, however, that such inhomogeneities gen-

erate a gravitational-force component tangential to earth's ellipsoid. In plane mesoscale models using Cartesian 

coordinates (an f-plane or a β-plane), this means that additional volume inhomogeneous forces with a horizontal 

component have to be taken into account. The dynamics of the atmosphere is quite sensitive to such components. 

 Recently we showed that in the highly anomalous regions GFAs, in principle, can lead to appreciable dy-

namic effects, in particular, the generation of regular currents and internal gravity waves (IGW). But this analy-

sis has so far been limited to two-dimensional problems (that is, the effects of two-dimensional GFAs were con-

sidered). In this paper, the next step is taken: in the linear approximation, IGW generation in the atmosphere is 

analytically studied under the action of three-dimensional GFAs on the atmospheric flow above a flat horizontal 

underlying surface. The terms in the expressions obtained for velocity components and pressure perturbations 

can be divided into two categories. One of them directly describes flow around equipotential surfaces. These 

terms do not contain waves propagating with vertical component and slowly decay with altitude on the same 

scales as the gravity anomaly. Other terms describe internal gravity waves, whose phase velocity is directed 

downward and the group velocity, upward. The amplitude of these waves in the velocity field exponentially in-

creases with altitude.  

 Taking into account the three-dimensional geometry of GFAs in the three-dimensional formulation can 

lead to a noticeable change in results in comparison with the two-dimensional model considered earlier. In addi-

tion to the appearance of horizontal motions perpendicular to the background flow, the wavelength and the verti-

cal flux of wave energy can markedly vary: GFAs elongated along the stream can lead to smaller perturbations 

in amplitude than the “ridge” oriented perpendicular to the background flow. The analytical expression is de-

rived; it shows that the mentioned energy flow is proportional to the background buoyancy frequency, to the 

squares of the GFAs amplitudes, and to the background flow velocity. According to numerical estimates, this 

flow can be noticeable, although it is usually much inferior to IGW sources associated with the relief.   

 

Keywords: anomalies of gravity, atmospheric disturbances, three-dimensional analytical model, internal gravity 

waves. 

 

 

 Authors showed in the recent work [Ingel, Makosko, 2017a] that impact of gravity 

anomalies on the horizontal wind can possibly lead to the generation of internal gravity waves 

(IGW) in the atmosphere. In this case, the simple two-dimensional analytical model was con-

sidered and the theoretical estimates of characteristics of such waves were carried out. The 

current work presents the next step: the internal gravity waves generated on the three-

dimensional gravity anomalies are considered in the three-dimensional formulation. 
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 We shall use the Cartesian coordinate system where z-axis is directed vertically up-

wards, x-axis is horizontal along the background wind which velocity u  is assumed to be 

constant, y-axis is a horizontal axis oriented transversally to the flow. To generalize the stand-

ard dynamic equations taking into account the gravity anomalies, we introduce the additional 

forces (accelerations) ( , , )xg x y z , ( , , )yg x y z , ( , , )zg x y z  – horizontal and vertical compo-

nents of gravity anomaly [Ingel, Makosko, 2017a–c]. From the properties of the gravitational 

potential follow the equations of “cross” derivatives  

x zg g

z x

 


 
 etc.       (1) 

 Below we will consider the reference system moving along with the horizontal current. 

In such reference systems components of gravity anomaly also depend on time. Taking into 

account the considered generalization, the initial linearized system of hydrodynamic equa-

tions [Gill, 1986, section 6.4] in the reference system moving along the flow, has a form  
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        (2) 

Here t is time; u, v, w are the perturbations of velocity components along x, y, z axes, respec-

tively; ( )z  is a background (unperturbed) air density; p,  are the pressure and density per-

turbations, respectively. As well as in [Gill, 1986; Ingel, Makosko, 2017a,c], at this stage of 
the research the Coriolis accelerations are not taken into account (we consider disturbances of 
rather small horizontal scales).  
 At the lower boundary of z we assume that the impermeability condition w=0 is satis-
fied (when considering the processes above the water surface, generally speaking, another 
condition is required [Ingel, Makosko, 2017a, b]). 
 Similarly, [Ingel, Makosko, 2017a], it is easy to get equalities  

2 2 2

2 2
,

1 yx
gw p p g

z t x yx y

 
 
 
 

   
   

     
        (3) 

2 2
2

2

1 zw p g
N w

z t tt

  
   

   
,      (4) 

where the square of the buoyancy frequency (Brunt–Väisälä frequency) is 

2 g d
N

dz


 


.          (4a) 

Excluding from the system (2) all unknowns (except for w), we arrive at the equation  
2 2 2 2 2 2

2

2 2 2 2 2

1 yx
gw w w w w N g

N
z z g t x yt x y x y

              
           

               
.  (5) 

Distribution of the background density is approximated by the exponent  

0( ) exp ,
z

z
H

 
    

 
 

from which 

2 g
N

H
 ,          (6) 
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where the effective medium thickness is H=const. 

 It is convenient to analyze the model with sinusoidal dependence of gravity anomalies 

on horizontal coordinates. In the rest reference system, the equations for accelerations gx, gy, 

gz   have the following form: 

exp( )cos( )sin( ),

exp( )sin( )cos( ),

exp( )sin( )sin( ),

x x y

y

y x y

x

z x y

x

g G kz k x k y

k
g G kz k x k y

k

k
g G kz k x k y

k

 

 

  

      (7) 

where G is the amplitude; 1 1,x yk k   are horizontal scales of anomaly;  
1/2

2 2
x yk k k  . In the 

moving reference system associated with the flow, 

 exp( )cos ( ) sin( )x x yg G kz k x ut k y    etc. 

 Solution of the equation (5) in this system is sought as  

    1 2( )cos ( )sin sin( )x x yw W z k x ut W z k x ut k y          .   (8) 

 For amplitude 1( )W z  we get the equation  

2 22 2
21 1

12

1
exp( )

x x

d W dW k N k N G
k W kz

H dz k u k ugdz
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     

;   (9) 

for amplitude 2( )W z  – similar homogeneous equation.  

 In some cases, it is more convenient to use variables 

 1,2 1,2( ) ( )exp 2W z W z z H  ,     (10) 

for which the equation (9) has the form  
22 2

1 1
2 2

exp( )
x

d W W k N G
kz

k ugdz

 
   
  

.       (11) 

Here 1 2k k H  ;    is a vertical scale defined as  
1/2

2 2 2
21

2x

k N
k

k u H


      
         

      

.        (12) 

 In case of gravity anomalies of sufficiently small spatial scales along the background 

flow (i.e. at sufficiently large values of xk ) in (12) the expression in square brackets is nega-

tive corresponding to the negative values of 
2
. In this case, the solution decays exponentially 

with the altitude (“trapped waves”). In this paper we consider the case of positive values of 


2
. 

  We take the characteristic values of atmosphere N=10
–2 

s
–1

, u =10 m/s. Then  

H=10
5
 m, u N =10

3
 m, and at horizontal scales of 1

xk  , much bigger than a  kilometer, we 

have 

xk u

k N
  .         (13) 

 General solution of the equation (11) can be written as   
2 2
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similarly – 2 3 4( ) sin cos
z z

W z C C
   

    
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, where Ci  are integration constants that are selected 

considering both the boundary condition on the surface z=0 and radiation condition – the 

group velocity must be directed upwards [Gill, 1986, p.175]. The latter condition corresponds 

with the downward phase velocity of internal gravity waves [Gill, 1986].  

 In this case we get  

C1=C4=0, 
2 2

3 2 .
x

k N G
C C

k aug

 
    

 
 

 As a result, the vertical velocity is determined by the expression   

   0 exp( )cos exp cos sin( ),
2

x x y

z z
w W kz k x ut k x ut k y

H

    
               

 (14) 

where 0W  is the introduced characteristic scale of the amplitude of emerged vertical move-

ments, that has the form  
2 2

0 .
x

k N G G
W u
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 
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Compared with the two-dimensional problem [Ingel, Makosko, 2017a], in addition to the ap-

pearance of the dependence on the y-coordinate transverse to the flow, combination 

 xN k k appears in (14) instead of buoyancy frequency N.  

 In other words, when shifting to the three-dimensional problem the “effective stratifica-

tion” is amplified in the expression for the vertical velocity. According to (13), the vertical 

component of the wave vector 1  can be significantly larger than in the case of the two-

dimensional problem. 

 Substituting (14) into (3), it is easy to get the expression for the pressure deviation – 

   
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1 exp( )sin

sin cos exp sin( ),
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        (15) 

where the dimensionless parameter  2
xN ag k k Nu g    .  

 Now, using the first two equations from (2), it is possible to express in the explicit form 

the perturbation of the horizontal velocity: 
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where was introduced the scale of horizontal velocity perturbations  

2

.
x

N G NG
U

aguk kg


   

 Terms in these expressions can be divided into two categories. First category includes 

terms with multiplier exp(–kz), directly describing the flow around equipotential surfaces. 

They are not wave-like (do not contain waves propagating vertically) and slowly decay with 

altitude on the same scales 1k , as the gravity anomaly.  

 Terms of the second category contain multipliers  sin ( )z k x ut   , 

 cos ( )z k x ut    and describe internal gravity waves, whose phase velocity is directed 

downwards and the group velocity, upwards. The amplitude of these waves in the velocity 

field exponentially increases with altitude as exp(z/2H). The vertical component of the wave 

vector is 1 , frequency is ku , the vertical phase velocity is .k u  

 The solution depends on several spatial scales – 1

xk  , 1

yk  , H, .u N  The order of at least 

one of the first two determining the spatial scales of the anomaly is considered to be not less 

than 100 km.  

 The order of the third, apparently, should be considered close to the thickness order of 

the troposphere, i.e. 10 km. (Typical value for the atmosphere N=10
–2 

s
–1

 is obtained from 

(4a) with the characteristic vertical scale of change of background density H of the order of 

100 km, while in the real atmosphere H10 km. The noted is a side-effect of using the incom-

pressible fluid model.)  

 The fourth scale with the considered values of parameters is no more than several kilo-

meters. From such ratio of scales follows (13), as well as   

1, 1 2 , 2 2 1, 1, 1, 1xH k k H k H k u kHN k a
H

 
               .   (17) 

 It should be noted that vertical component of the wave vector in the three-dimensional 

problem, basically, can be significantly larger than in the two-dimensional (if anomalies are 

elongated along the background flow due to xk k  factor in (13)). Unlike the two-dimensional 

problem the velocity component v along the transverse y-axis appears at a flow around the 

three-dimensional anomaly. With the increase in ky , its amplitude y xGNk agkk  increases 

monotonically from zero (two-dimensional problem) to the values of the order xGN gk  at ky, 

which order is greater than kx  order or close to it.  
 

 Note, that  

Nh~GN/gkx ,           (18) 

where h is deviation amplitude of geoid in the considered anomaly. Expression (18) for the 
amplitude of horizontal velocity deviations was already mentioned in the previous works of 
the authors (see, for example, [Ingel, Makosko, 2017c]) in connection with another perturba-
tion mechanisms associated with gravity anomalies and, apparently, is a very common pat-
tern. 
 The vertical flow of the wave energy is estimated by the formula  

zF pw , 

where the bar indicates the averaging by the wave length [Gill, 1986]. It can be seen, that with 
such averaging the non-zero contribution to (14) and (15) is made only by the product of 
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terms with  cos ( )z k x Ut   . It is easy to obtain approximate expression independent of 

the altitude  
2 2

2
0 2

1
sin ( )

2
z y

Nu G
F k y

g k
  .            (19) 

 This result differs from the corresponding formula of the two-dimensional problem [In-

gel, Makosko, 2017a] by the presence of multiplier 
2sin ( )yk y  and by k instead of xk  in the 

denominator. The latter means that the wave energy flow in the three-dimensional problem, 
generally speaking, can significantly decrease as compared to the two-dimensional (at 

y xk k ). This is understandable, since anomalies elongated along the stream lead to smaller 

perturbations in amplitude than the “ridge” oriented perpendicular to the background flow. 
And otherwise the result (19), as explained in [Ingel, Makosko, 2017a], is explicitly interpret-
ed. The horizontal air flow in the gravity anomalies is curved and tends to move along the sur-
faces of equal potential [Ingel, Makosko, 2017b] (the situation is more complicated near the 
underlying surface since the impermeability condition excludes the possibility of existence of 
a motion component normal to this surface). This means the appearance of the vertical com-

ponent of velocity with the amplitude g/Gu~w . The last expression taking into account 

(13) and (17) is approximately equal to the amplitude of (14). Amplitude of the vertical dis-
placement of the air flow (or equipotential surfaces – deviation amplitude of geoid) h of order 

xG gk , from where xhk~g/G . This shows, that (19) is very close (with an accuracy to nota-

tions) to the formula (6.8.7), given in [Gill, 1986], that describes the vertical energy flux of 
internal gravity waves, caused by inhomogeneities in the relief with amplitude h. Thus, when 
we take into account the impact of gravity anomalies (curved equipotential surfaces) it leads 
to the effect similar to the influence of relief inhomogeneities of the same amplitude and hori-
zontal scales. 

 If we take the amplitude of gravity anomaly G=10
–3

 m/s
2
, x yk k  210

–5
 m

–1
  (that 

corresponds to the length of a half-wave in each direction of about 150 km), u =20 m/s, 

N=10
–2

 s
–1

, 0=1 kg/m
3
, then we get u=v0.03 m/s; energy flux of 10

–3
 W/m

2
. For comparison 

note that according to [Jarvis, 2001], the average energy flux coming from the lower atmos-

phere to the upper due to the wave disturbances and tidal oscillations, is about 210
–4

 W/m
2
.  

 Thus, on the basis of the three-dimensional model in linear approximation analytical so-
lutions were obtained showing that gravity anomalies when taking into account the three-
dimensional geometry can, generally speaking, significantly affect the characteristics of gen-
erated internal gravity waves in the atmosphere. In addition to the appearance of motions per-
pendicular to the background flux, the wavelength and the vertical flux of the wave energy 
can vary considerably. 
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