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Abstract. Laboratory experiments with rock samples show that their creep at small strains is transient. Therefore 
we can assume that the lithospheric plates, where strains are small, demonstrate the transient creep that is 
described by the linear hereditary Andrade rheological model. The effective viscosity that characterizes the 
transient creep is lower than the effective viscosity at steady-state creep and depends on the characteristic time of 
the process. The typical duration of isostatic rebound after an initial disturbance of the Earth’s surface is several 
thousand years, and therefore, the depth distribution of the rheological properties of the lithosphere and crust is 
different from the distribution that corresponds to slow geological processes.  
 It is shown that when considering the isostatic recovery process, the upper crust can be modeled as a thin 
elastic plate and the underlying lower crust and lithosphere, as a half-space with transient creep. For such a 
system, the continuum mechanics equations are solved using the Fourier and Laplace transforms. The solutions 
are obtained in the form of transverse waves that propagate, with strong attenuation, from the area of the initial 
disturbance along the Earth's surface and cause its vertical displacements. These solutions, called the inertialess 
Rayleigh waves, depend on the initial disturbance. In the case of a point initial disturbance, the analytical 
expression is found for these waves that gives an explicit dependence of the vertical displacements of the Earth's 
surface on the horizontal coordinates and time. The inertialess Rayleigh waves can be regarded as a mechanism 
of modern vertical movements of the crust. 
 
Keywords: transient creep, isostatic recovery, vertical movements of the Earth’s surface. 
 
 

Introduction 
 
 Laboratory experiments with rock samples show that when creep strains are small, 
transient creep takes place: at constant applied stresses, the creep strain rate decreases with 
time. Plate tectonics allows only small deformations in lithospheric plates and, therefore, the 
creep of the lithosphere is transient. Hereinafter, the term "lithosphere" means a lithospheric 
plate, and the boundaries between the plates, where the deformations are large, are excluded 
from consideration. The lithospheric plate is a cold boundary layer formed by mantle 
convection, and the thickness of continental plates may exceed 200 km. Deformations of the 
lithosphere consist of creeping, elastic, and brittle (pseudo-plastic) deformations. These 
rheological mechanisms compete with each other, and the mechanism that corresponds to the 
lowest effective viscosity dominates. The assumption of the steady-state creep of the 
lithosphere that is commonly used in geophysical studies, leads to a very high effective 
viscosity characterizing creep at small deformations. In this case, the rheology of the 
lithosphere can be described by an elastic-brittle rheological model neglecting creep. 
Transient creep corresponds to a much lower effective viscosity than steady-state creep. 
Therefore, transient creep must be taken into account when considering geophysical processes 
in the lithosphere. The effective viscosity corresponding to transient creep depends on the 
characteristic duration of the geophysical process under consideration. Birger [1998, 2000, 
2012, 2013] considered the process of formation of sedimentary basins on continental cratons. 
The characteristic time of this process is about 108 years. In the present study we consider the 
recovery of isostatic equilibrium after the initial small-scale perturbation of the relief of the 
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earth's surface (the horizontal dimension of the perturbed region does not exceed 1000 km). 
As a result of the recovery process, the Earth's surface returns to a flat position that 
corresponds to the equilibrium state with a uniform distribution of density in the horizontal 
direction. The characteristic duration of this process does not exceed 1000 years and, 
therefore, the distribution of rheological properties over the depth of the lithosphere and the 
crust differs from that corresponding to slower processes. The process of isostatic recovery is 
accompanied by inertialess Rayleigh waves that, strongly damping, propagate from the region 
of the initial perturbation along the Earth's surface and cause its vertical displacements 
 

Rheological model 
 
 Transient creep characteristic for sufficiently small deformations, is described by the 
Boltzmann integral equation 

1 1 10

1( ) (0) ( ) ( )
2

t

ij ij ijt K t t t dtε − ε = σ −∫ ,         (1) 

where ijε  is the tensor of deviatoric creep strains; ijσ  is the tensor of deviatoric stresses, K (t) 
is the integral creep kernel 

2 3( ) 3K t t A−= ,        (2) 
 In the case when a constant stress ijσ , is applied at time t = 0, the relationship (1) and 
(2) is reduced to the Andrade law that describes the transient creep of rocks with sufficiently 
small strains and constant stresses: 

1 32 ij ijt Aε = σ ,       (3) 

where ( )1 2 3 2, 2 , 10 10tr ij ij tr
− −ε < ε ε = ε ε ε ≈ − , ε is the second invariant of the deviatoric 

strain tensor and trε  is its transition value.  
 The medium described by the rheological equations (1) and (2) will be called the 
Andrade medium. For sufficiently large strains trε > ε  transient creep is replaced by steady-
state creep that is described by the rheological model of a power non-Newtonian fluid. Birger 
[1998] introduced a nonlinear hereditary rheological model and considered the situation when 
the flow associated with small deformations is superimposed on the stationary flow described 
by the rheological model of a power non-Newtonian fluid. In this paper, it is shown that the 
Andrade linear integral model is applicable if the characteristic duration of the flow under 
consideration is less than trε ε& ,  where ε&  is the  rate of  strain in the stationary  flow.  Since 
ε&  ≈ 10–15 s–1  in the mantle  beneath  the  lithosphere [Turcotte, Schubert, 1985],  the  
Andrade model is applicable if the  duration  of  the  superimposed  flow  does  not  exceed 
1012 s ≈ 3⋅104 years. 
 The value of the Andrade rheological parameter depends on temperature (there is a 
significant vertical temperature gradient in the lithosphere) and mineralogical composition. 
The distribution of the Andrade parameter over the depth of the lithosphere was obtained in 
[Birger, 2013]. In the upper crust with a thickness of about 20 km, this parameter decreases 
with depth from the value A ≈1016 Pa·s1/3 to A ≈1013 Pa·s1/3. In the lithosphere lying under the 
upper crust, the average value of the Andrade parameter is estimated as A≈5⋅1012 Pa·s1/3. In 
the mantle under the lithosphere, the average value of the Andrade parameter is an order of 
magnitude higher, which is due to higher pressure [Birger, 2013]. 

Since the total deviatoric deformation of the medium can be expressed as the sum of the 
deviatoric deformation of creep (1) and the deviatoric deformation of elasticity 
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2ij ijε = σ μ ,           (4) 
where μ is an elastic shear modulus, the elastic-creeping medium with transient creep is 
described by equation 

1 1 10

1( ) (0) ( ) ( )
2 2

tij
ij ij ijt K t t t dt

σ
ε − ε = + σ −

μ ∫ .    (5) 

Using the Laplace transform, the rheological equations (1) and (2) can be written in the form 
 

( )* * * 1 3 1 32 , 1 1 3 3ij A ij AG G K As As∗ ∗σ = ε = = Γ ≈ ,       (6) 
 

where the Laplace transform is marked by the asterisk, *
AG  is the Laplace analog of the shear 

modulus for the Andrade medium, s is the Laplace variable, and ( )1 3 3Γ ≈  is the gamma-
function. Equation (5) corresponds to the Laplacian image  
 

1 3
* *

1 32 ,ij ij
AsG G

As
∗ ∗ μ

σ = ε =
μ +

,      (7) 

where *G  is the Laplace analog of the shear modulus for an elastic-creeping medium. 
 As follows from (7), the elasticity of the medium can be neglected if 
 

( )3s A<< μ .           (8) 
 

Under this condition, the Laplace analog of the shear modulus *
AG  for the Andrade medium is 

significantly smaller than the elastic shear modulus μ. According to the Laplace transform 
property, it follows from (8) that 

         ( )3t A>> μ .          (9) 
 

 The compressibility of the medium can be neglected if the Laplace analog of the shear 
modulus *

AG  for the Andrade medium is significantly smaller than the bulk modulus K. Since 
the elastic shear modulus μ is smaller than the bulk modulus (K≈3μ), the condition (9) allows 
neglecting not only the elasticity but also the compressibility of the medium. 
 The elastic modulus of the Earth's crust is estimated as μ ≈ 5⋅1010 Pa. In the upper crust, 
the Andrade rheological parameter is estimated as A ≈ 1014 Pa·s1/3. Since the characteristic 
time of the process under consideration does not exceed 1000 years, with such a large value 
of the Andrade parameter in the upper crust  

( )3t A<< μ , 
and the upper crust behaves as an elastic medium. More precisely, the upper crust, whose 
thickness is of the order of 20 km, is brittle - elastic, and elasticity dominates only in the 
lower layer of the upper crust, whose thickness is about 10 km. The uppermost layer of the 
crust is dominated by brittleness and its strength is very small [Birger, 2013]. Hereinafter, we 
simply neglect the presence of a brittle layer and assume that the upper crust is an elastic layer 
10 km thick. For the lower crust and mantle lithosphere, average depth value of the 
rheological parameter is estimated as A≈5⋅1012 Pa·s1/3 and the right side of inequality (9) is  
108 s ≈ 3 years. Thus, the lithosphere under the elastic upper crust behaves as the creeping 
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Andrade medium, without showing elasticity and compressibility for times in excess of 10 
years. 
 The influence of inertia is negligibly small (the inertia forces are small in comparison 
with the forces arising at deformations of the Andrade medium), if 

( )3 52t L A>> ρ ,          (10) 

where L is the characteristic length scale. When L ≤ 1000 km, the right-hand side of 
inequality (10) does not exceed 100 s and, neglecting elasticity, the more we can neglect 
inertia. Process with a typical time of about 1000 years is slow enough to neglect elasticity, 
compressibility, and inertia, but it is not slow to take into account the buoyancy Archimedes 
force due to the vertical temperature gradient in the lithosphere. 
     If we take into account the elasticity of the lithosphere under the upper crust and the 
inertia, the perturbation of the relief of the Earth's surface causes not only inertialess Rayleigh 
waves, but also ordinary Rayleigh waves that rapidly propagate and rather weakly attenuate. 
 

Statement of the problem. Fourier and Laplace transforms 
 
 In this paper, two-dimensional statement of the problem will be used, which is 
explained by two reasons. First, numerous studies of postglacial flows carried out within the 
framework of the Newtonian rheological model show that the transition from 2D to 3D 
formulation does not change the results significantly. The existing observational data are not 
so definite as to seek the solution with an accuracy exceeding the estimate by an order of 
magnitude. Secondly, this study deals with relatively narrow areas of initial perturbations of 
the relief. When the melting of ice occurs on huge glacial areas, such as in Fennoscandia and 
Canada, glacial loads are first removed in narrow elongated areas at the edges of large 
glaciations. The data on small-scale postglacial uplifts refer primarily to such highly 
elongated regions of initial disturbances that cause flows that can be described within the 
frames of 2D models. 
     We consider an elastic thin plate lying on a half-space with Andrade rheology. The origin 
is placed on the upper surface and the z axis is directed vertically upwards. A thin plate (z = 0) 
models the upper elastic crust and the half-space (z<0), the underlying lithosphere and mantle. 
Equations of equilibrium for an incompressible half-space are written in the form 

0xx xzp
x x z
∂ ∂σ ∂σ

− + + =
∂ ∂ ∂

,          (11) 

0xz zzp
z x z
∂ ∂σ ∂σ

− + + =
∂ ∂ ∂

,         (12) 

0x zu u
x z

∂ ∂
+ =

∂ ∂
,             (13) 

where p is the pressure perturbation; xu  and zu  are the displacements, and equation (13) is the 
incompressibility condition. Equations (11) - (13) are added to the original rheological 
equation (1), where the strains are related to the displacements by the relations 

 

                       (14) 

  
The boundary conditions at the upper surface of the half-space (z = 0) are determined by 

the force action of the elastic plate  
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2

2

2 1 0
1

x
xz

u
x h

∂
+ σ =

− ν ∂ μ
,          (15) 

4

4 0z
z zz

uN gu p
x

∂
+ρ + σ − =

∂
,       (16) 

3

6(1 )
hN μ

=
− ν

,          (17) 

where νis the Poisson's ratio, N is the flexural rigidity of the elastic plate with a thickness h. 
The displacements xu  and zu  in the plate are equal to the displacements in the underlying 
half-space at z = 0. 
     The physical variables in equations (1) and (11) - (14) depend on the horizontal coordinate 
x, the vertical coordinate z, and the time t. Applying the Fourier transform with respect to the 
coordinate x and the Laplace transform with respect to time t to these equations and excluding 
all physical variables excepting the vertical displacement, we get the relations 

* *
x z

iU DU
k

= ,         (18) 

* 3 2 * 0
2

( ) ( ) z
G s UP D k D U

k s
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

,      (19) 

* * * 02 ( )zz xx z
UG s D U
s

⎛ ⎞Σ = −Σ = −⎜ ⎟
⎝ ⎠

,     (20) 

* 2 2 * 0( )( )xz z
i UG s D k U
k s

⎛ ⎞Σ = + −⎜ ⎟
⎝ ⎠

,      (21) 

where the differential operator D d dz=  is introduced, and 0 0( , )U U x z=  is the initial (t = 0) 
distribution of vertical displacements. In the equations (18) - (21), the Fourier transforms of 
the physical variables are denoted by corresponding capital letters, the Laplace images are 
marked with the asterisk, k is the wave number (the Fourier variable), and s is the Laplace 
variable. Then we obtain the ordinary differential equation for the vertical displacement 
 

2 2 2 * 0( ) 0z
UD k U
s

⎛ ⎞− − =⎜ ⎟
⎝ ⎠

.           (22) 

 The solution of equation (22) that satisfies the boundary condition for z→-∞ is written 
as 

[ ] ( )* 0
1 2( ) ( ) expz

UU C s C s z k z
s

− = + ;        (23) 

where 1C  and 2C  are arbitrary integration constants that depend on the Laplace variable and 
the wave number k can take negative values. Substitution of the solution (23) into the 
boundary conditions (15) - (16) allows us to eliminate arbitrary constants and represent the 
vertical displacement of the upper surface (z = 0) in the form 
 

*
* 0

4 *

2 ( )( )
2 ( )
A

z
A

k G sU kU
s g Nk k G s

= ⋅
ρ + +

 ,       (24) 

 
where * 1 3( )AG s As=  is the analog of the shear modulus for the Andrade medium. It should be 
noted that the substitution of (18) - (23) into the boundary condition (15) leads to the relation 
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2 1C C k= − , at which horizontal displacements and tangential stresses are absent on the 
upper surface. 
     In order to find the asymptotic (small times) dependence of the Laplace origin on time, it is 
sufficient to expand the Laplace image in a series in powers of s in a neighborhood of s = ∞ 
and invert by Laplace each term of the series [Doetsch, 1967]. The right-hand side of (24) for 
s→∞ can be expressed in the form of a series 
 

( )* 1 4 3
0( ) ( )zU U k s k s− −= −Φ +K ,     (25) 

4

( )
2

g Nkk
A k

ρ +
Φ = .       (26) 

Inverting the terms of the series (25), we obtain the asymptotic dependence of the vertical 
displacement on time 

( )
1 3

0( ) ( ) 1 ( )
4 3z

tU t U k k
⎛ ⎞

= −Φ +⎜ ⎟Γ⎝ ⎠
K ,       (27) 

where the gamma-function at the point 4/3 is estimated as 

( ) ( )14 3 1 3 1
3

Γ = Γ ≈ .       (28) 

The asymptotic dependence (27) is valid if 
( ) 3( )t k −<< Φ .          (29) 

As follows from (28) and (29), the asymptotic dependence (27) can be represented in the form 
 

( )1 3
0( ) ( )exp ( )zU t U k k t= −Φ .     (30) 

 
 The physical parameters entering into equations (16) and (26) are estimated as 

ρ≈3⋅103 kg/m3,   g≈10 m/s2,  A≈5⋅1012 Pa·s1/3, μ≈5⋅1010 Pa, ν≈0.25, N≈1022 Pa·m3.     (31) 
With these estimates characterizing the elastic upper crust and the underlying lithosphere, the 
function Φ (k) determined by (26) takes the form 
 

9 9 4( ) (3 10 10 )k k k−Φ ≈ ⋅ + .           (32) 
 

 Let at the initial time t = 0 the displacement of the upper surface (z = 0) is given as 
 

0( )zu u x= .         (33) 
 

The Fourier transform of (33) is written in the form 
 

  0 0( ) ( )exp( )U k u x ikx dx
∞

−∞
= −∫ ,     (34) 

 
and the inverse Fourier transform is 
 

0 0
1( ) ( )exp( )

2
u x U k ikx dk

∞

−∞
=

π ∫ .      (35) 
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Inversing the Fourier image (30), we find 
 

( )1 3
0

1( , ) ( )exp ( )
2zu x t U k k t ikx dk

∞

−∞
= −Φ +

π ∫ .     (36) 

 
If 0( )u x  is an even function, (36) can be written as 
 

 ( )1 3
00

1( , ) ( )exp ( ) cos( )zu x t U k k t kx dk
∞

= −Φ
π ∫ .     (37) 

 
 Let the initial displacement have the form of a "step" 
 
 

,                                           (38) 

 .   

The Fourier transform for this "step" has the form 
 

( )
0 0

sin 2
( ) 2

lk
U k u

k
= .        (39) 

 
For a sufficiently large width l of the initial perturbation, the values of the function (39) are 
very small when k<-2π /l and k> 2π /l, i.e., the wider the perturbation region, the narrower is 
the range of wave numbers k, where the Fourier image is different from zero. Thus, the 
integration on the right-hand side of (36) is carried out over the region -2π /l<k<2π /l in the 
neighborhood of the point k = 0. According to the solution (23), for a fixed wave number k, 
the isostatic flow causes displacements in the lithosphere depending on the depth as exp (-kz). 
Since k<2π /l, we can regard that this flow penetrates into the lithosphere to a depth of the 
order of l/π. Therefore, the flows arising after the removal of small-scale glaciations or other 
surface loads (for example, drying salt lakes), for which l does not exceed 200 km, are 
concentrated in the lithosphere. Caused by large-scale glacial loads (l ≈ 1000 ÷ 3000 km), 
flows that penetrate into the low mantle and recover isostasy over a period of time of about 
10000 years, are not considered in this paper. 
     As follows from (39), the Fourier transform does not depend on k, if the width of the initial 
perturbation is small (lk<< 1),  

0 0( )U k u l= ;           (40) 

 
The image (40) corresponds to a point initial perturbation 
 

0 0
1( ) ( ), ( ) exp( )

2
u x u l x x ikx dk

∞

−∞
= ⋅ δ δ =

π ∫ ,     (41) 

where δ (x) is the delta function. 
     It is known that the inverse Fourier transform applied to the image of a function, having a 
discontinuity, leads to an original that differs from the original function at the discontinuity 
(this distortion is called the Gibbs effect). The "step" (38) has a discontinuity at x = l. 
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Therefore, it is more convenient to use a continuous function to describe the initial 
perturbation, for example, the Gaussian distribution [Cathles, 1975]. If the dependence of the 
initial perturbation on the horizontal coordinate x is characterized by the Gaussian distribution 
 

2
0 0( ) exp( )u x u bx= − ,      (42) 

 
the characteristic width of the initial perturbation is estimated as 1l b≈ , and the Fourier 
transform takes the form 

2

0 0
1( ) exp
2 4

kU k u
b b

⎛ ⎞π
= −⎜ ⎟

⎝ ⎠
.      (43) 

 
 To obtain the dependence of the vertical displacements of the surface on the horizontal 
coordinate and time for a given initial distribution (42), it is sufficient to substitute the image 
(43) into equation (36) or (37). Figure 1 shows the results of numerical integration. The 
displacements are presented in dimensionless form / , where is the vertical 
displacement in the center of the region of the initial disturbance, and the horizontal 
coordinate is measured in kilometers. Time is counted from the moment of the initial 
perturbation. The initial displacements are given by the Gaussian distribution and correspond 
to an isostatically unbalanced depression, the horizontal dimension of which is about 200 km. 
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Fig.1. Dependence of the earth's surface vertical displacements on the horizontal coordinate at 
different moments of time. Curve 1 corresponds to 30 years, curve 2 to 300 years, curve 3 to 1000 
years.  
 

Point initial perturbation 
 
 In the case of a point initial perturbation (perturbation of any initial width l can be 
regarded as a point perturbation when we consider displacements at a sufficient distance from 
the initial perturbation, that is, for x>>l, it is possible to obtain an analytic solution of the 
problem of vertical surface motions. For the point initial perturbation, the dependence of the 
vertical displacements of the surface on the horizontal coordinate and time is determined by 
the integral 
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( )

0

1 3

( , ) ,
2

exp ( ) .

z
u lu x t I

I k t ikx dk
∞

−∞

=
π

= −Φ +∫
     (44) 

 
In the integrand there is a function Φ(k), given by formula (32). This function has a sharp 
minimum, which is found from condition  

0d
dk
Φ

=          (45) 

and is attained at k=km, where 
1 4

5 13 10 м
3m

gk
N

− −ρ⎛ ⎞= ≈ ⋅⎜ ⎟
⎝ ⎠

.          (46) 

 If k >> km, the values Φ(k) are very large and the integrand vanishes. Therefore, we can 
assume that the integration on the right-hand side of (44) takes place in a rather narrow range 
of wave numbers lying in the neighborhood of k=km. The neighborhood of the point k=–km 
gives exactly the same contribution to the integral (44).  
 By (45), the expansion of the function Φ(k) in a power series in the k=km neighborhood 
has the form 

2( ) ( )m mk a k kΦ = Φ + − +K ,      (47) 
where 

( )m mkΦ = Φ ≈1.3⋅10–4 s–1/3,  a≈1.9⋅105 m2⋅s–1/3.     (48) 

The power series (47) representing the function Φ(k) given by (26) converges if m mk k k− ≤ , 
i.e., the radius of convergence of this series is R=km. 
After changing the variable 

mv k k= −        (49) 
the integral (43) takes the form 

( )1 3 22 exp ( )m mI t av ik x ivx dv
∞

−∞
= − Φ + + +∫ .    (50) 

 
The factor 2 on the right-hand side of (50) appears due to the contribution of the 
neighborhood of the point k= –km. 
 Equation (50) can be rewritten as 
 

( )1 32 exp ( )mI E t f v dv
∞

−∞
= ∫ ,       (51) 

where 

( )1 3 2
1 3exp , ( )m m m
xE ik x t f v av i v

t
= − Φ = − + .      (52) 

 
For large values of t, the integral in equation (51) has a pronounced maximum, and therefore 
the main contribution to the value of this integral is given by the neighborhood of the 
maximum point. The value of this integral is found by the saddle point method [Copson, 
1966]. Applying the saddle point method, we assume that the integration variable v is not real, 
but complex. Since after such a substitution the integrand has no singular points, integration 
along the real axis can be replaced by integration over another contour in the complex plane. 
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A contour passing through the saddle point is chosen, in the neighborhood of which the 
integrand complex function has the most pronounced maximum. The stationary point v0  is 
found from condition 

0df
dv

= .       (53) 

 The function of the complex variable f(v) given by (52) has a stationary point 

0 1 32
xv i

at
= .        (54) 

As follows from (52) and (54), in a neighborhood of the stationary point  the function f (v) 
can be represented in the form  

2
2

0 0 0 0 2 3( ) ( ) ( ) , ( )
4

xf v f v a v v f f v
at

= − − = = − .       (55) 

Substituting (55) into (51), we obtain 

( )1 3 1 3 2
0 02 exp exp ( )mI E t f t a v v dv

∞

−∞
⎡ ⎤= − −⎣ ⎦∫ .     (56) 

 
 For the integrand complex function, the stationary point v0 is a saddle point. In the 
saddle-point method, the path of integration on the complex plane is chosen in such a way 
that it runs through the saddle point, and in a small neighborhood of this point is a straight 
line segment, in which the difference 0( ) ( )f v f v−  has real negative values vanishing only at 
v=v0. According to (55), this difference takes the form 
 

[ ]2 2
0 0( ) ( ) ( ) exp ( 2 )f v f v a v v a r i− = − − = − α + β ,     (57) 

 
where 0exp( ); exp( )a a i v v r i= ⋅ α − = ⋅ β . 
 From the relation (57), it is clear that an integration path on the complex plane can be 
chosen as a straight line segment, where β= – α/2. On this segment, the difference takes real 
negative values, and the integral is written as  

( )2 2
0exp ( ) exp exp

2
R

C R

ia v v t dv a r t dr
−

α⎛ ⎞⎡ ⎤− − = − −⎜ ⎟⎣ ⎦ ⎝ ⎠∫ ∫ ,    (58) 

where R is the radius of convergence of the series (47). The integral on the right-hand side of 
(58) can be represented as 

( ) ( )2exp erf
R

R
a r t dr R a t

a t−

π
− =∫ ,         (59) 

i.e., this integral is easily transformed to the error function 

( )2

0

2erf ( ) exp
x

x y dy= −
π ∫ . 

It is known that erf ( ) 1x =  at x >>1, and at x >1 is close to 1. 
 Thus, as follows from (44), (56), and (58), the required distribution of the vertical 
displacements of the surface takes the form 

( )
2

1 3 1 30
1 3 1 3

2( , ) erf exp
4z m m

u l xu x t R at ik x t
at at

⎛ ⎞π
= − Φ −⎜ ⎟π ⎝ ⎠

.       (60) 
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The found solution (60) is valid for sufficiently long times (from several hundreds to several 
thousand years). The upper bound on time is imposed by condition (29), where  k=km. 
The plots in Fig. 2 are constructed using (60) and show the dependence of the vertical 
displacements on the horizontal coordinate at different times. Differentiating the right-hand 
side of (60) with respect to t for a fixed value of x, it is not difficult to find the velocity of the 
vertical motion of the Earth's surface at points sufficiently far from the region of the initial 
disturbance of the relief.  For example, if  u0 = 100 m, l = 10 km, x = 100 km, the velocity 

zdu
dt

 reaches its maximum value (about 1 mm / year) during the time t≈600 years. 
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Fig.2. The dependence of vertical displacements of the Earth's surface on the horizontal coordinate at different 
times for the case if the width of the region of the initial displacement l is 10 km. Curve 1 corresponds to 30 
years, curve 2 to 300 years, curve 3 to 1000 years 
 
     If the lithosphere underlying the elastic upper crust had a rheology of Newtonian fluid with 
viscosity η, the analog of the shear modulus * ( )AG s  would have to be replaced by ηs, and 
equation (24) would be written as 

*
0 4

2
( )

2z

k
U U k

g Nk k s
η

= ⋅
ρ + + η

 .     (61) 

The inversion of the Laplace image (61) gives 
4

0( ) ( ) exp
2z

g NkU t U k t
k

⎛ ⎞ρ +
= −⎜ ⎟η⎝ ⎠

,      (62) 

The relation (62) is valid for any times t, unlike the relation (30) that characterizes the 
Andrade medium and is valid only for not too long times limited by the condition (29). 
Comparison of equalities (62) and (30) shows that for not too long times the Andrade medium 
can be characterized by an effective viscosity 

2 3
eff Atη = .          (63) 

As follows from (63), for times of the order of 1000 years ≈3⋅1010 s typical for small-scale 
postglacial flows, the typical value A=5⋅1012 Pa·s1/3 of Andrade rheological parameter 
corresponds to an effective viscosity effη ≈5⋅1019 Pa·s. Such an estimate is consistent with an 
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estimate of the viscosity obtained in the study of small-scale postglacial flows within the 
rheological model of the Newtonian fluid [Cathles, 1975]. 
 At long times, the displacement of the surface of the lithosphere with the Andrade 
rheology is fundamentally different from the displacements that arise at the Newtonian 
rheology of the lithosphere. In the neighborhood of the point s = 0, the right-hand side of (24) 
can be represented as a series  

2 3 1 3
*

0 2 3

1( ) ( )
( ) ( ) ( )z

s sU s U k
k k k

− −⎛ ⎞
= − +⎜ ⎟Φ Φ Φ⎝ ⎠

K .    (64) 

According to the theorem on the asymptotic behavior of the original [Doetsch, 1967], the 
Laplace original ( )zu t  for a long time can be represented in the form of a series whose terms 
are obtained as a result of the inverse Laplace transform of each term in the series (64). 
Retaining only the first term in the expansion, we find 

( )
1 3

0( )( )
( ) 2 3z

U k tU t
k

−

=
Φ Γ

.        (65) 

The asymptotic dependence (65) is valid for long times, when 
( ) 3( )t k −>> Φ .          (66) 

 As follows from (65), for large times in the lithosphere with Andrade rheology, modes 
with different wave numbers k decay in accordance with the same law t–1/3; and the effect of 
propagation of displacements of the surface disappears, which occurs at shorter times. Since 
the minimum value of Φ(k) is reached for k=km, inequality (66) holds for any wave numbers 
if 
                 (67) 
 
 In the other limiting case (t<<2⋅104 years) considered in this paper, modes with wave 
numbers k≈km undergo weakly attenuate and determine the values of displacements whereas 
modes with wave numbers, strongly different from km, decay according to the law t–1/3 and 
make a small contribution to the displacement of the surface. 
     Relations (67) are valid for a small-scale initial loading, for which l<2π/km. In the case of a 
large-scale load, i.e., when l>2π/km, the asymptotics, at which surface displacement occurs 
according to the law t–1/3, becomes applicable at shorter times than with a small-scale load. In 
this case, the propagation of displacements from the region of the initial surface perturbation 
occurs only at small times of the order of several tens of years, and later the displacements do 
not propagate, but simply gradually decay. 
 
 

Conclusions 
 

     Plate tectonics allows only small deformations in lithospheric plates, and therefore the 
creep of the lithosphere is transient. Assuming a steady-state creep of the lithosphere 
described by a power non-Newtonian rheological model, the effective viscosity of the 
lithosphere is very large and the lithosphere behaves like an elastic medium. Transient creep 
of the lithosphere greatly reduces its effective viscosity, and only a thin layer of the upper 
crust exhibits elasticity. The lithosphere, i.e. the cold boundary layer formed by mantle 
convection includes not only the elastic crust, but also the asthenosphere corresponding to 
data on postglacial isostatic recovery flows. 
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     Numerous studies, where the mantle postglacial flows are considered within the frames of 
the Newtonian rheological model determine an effective viscosity corresponding to processes 
with duration of the order of several thousand years. The effective viscosities thus obtained 
cannot characterize much slower geological processes. Transient creep of the lithosphere is 
described by the linear Andrade model. The rheological parameter Andrade characterizes 
low-strain processes of any duration with very different effective viscosities. 
     To estimate the effective viscosity, the initial distribution of the vertical displacements is 
Fourier transformed and the time dependence of the mode with a fixed value of the wave 
number k is investigated. In order to obtain the dependence of the displacement on the 
horizontal coordinate, it is necessary to perform an inverse Fourier transform that allows 
detecting the perturbation propagation from its initial point along the Earth's surface. This 
propagation that can be called the inertialess Rayleigh wave is due to the fact that modes with 
different wave numbers k attenuate with different rates. If vertical displacements have 
occurred in some region of the Earth's surface and have violated the isostatic equilibrium of 
the crust, then the process of isostatic recovery is not reduced only to a gradual decrease in the 
initial displacements in this region. The displacements propagate beyond the initial region, as 
can be seen in Fig. 1 and 2. This propagation (the inertialess Rayleigh wave) occurs with 
strong attenuation. 
     The process under consideration is related to the Elsasser diffusion waves [Elsasser, 1969] 
that are excited by initial horizontal displacements. In the Elsasser model, it is assumed that 
the horizontal flow of the Couette is realized in the asthenosphere, and the flow velocities 
vanish at the base of the asthenosphere. This artificial boundary condition was also used in 
subsequent studies [Turcotte, Schubert, 1985]. In the present work, the investigation of 
diffusion waves is carried out within the frames of the problem formulation typical for surface 
waves: the asthenosphere is modeled as a half-space, and displacements are bounded at large 
depths. Therefore, since the displacements are vertical at the upper horizontal boundary, the 
diffusion waves under consideration can be called the inertialess Rayleigh waves. If we 
consider horizontal initial displacements at the upper boundary and simulate the 
asthenosphere as a half-space, then the emerging diffusion waves can be called inertialess 
Love waves [Birger, 1989]. 
     The initial displacement may be caused by a depression formed after a melted glacier or a 
dried salt lake, or by a rise formed, for example, in the eruption of a volcano. For several 
thousand recent years, vertical displacements that violate isostasy occurred in different 
regions of the Earth's surface. The inertialess Rayleigh waves generated by these initial 
displacements propagate throughout the Earth's surface and can be considered as the 
mechanism of modern vertical movements of the earth's crust. These modern movements that 
occur during the last several thousand years are well observed, and their speed is estimated as 
1 ÷ 10 mm / year. The maximum speed of modern movement (1 cm / year) is seen on the 
northern coast of the Gulf of Bothnia and is caused by the postglacial uplift of Fennoscandia. 
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