GEOPHYSICAL RESEARCH, 2020, vol. 21, no. 4, pp. 51-69. https://doi.org/10.21455/gr2020.4-4

UDC 550.385, 550.386.6

Abstract  References   Full text (in Russian)

OVERVIEW OF ANOMALITY MEASURE APPLICATION FOR ESTIMATING GEOMAGNETIC ACTIVITY

A.A. Oshchenko(1), R.V. Sidorov(1), A.A. Soloviev(1,2), E.N. Solovieva(1,2)

(1) The Geophysical Center of the Russian Academy of Sciences, Moscow, Russia

(2) Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

Abstract. The possibilities of using the anomality measures (AM) in the problems of determining periods of increased and decreased geomagnetic activity, as well as the dependences of the AM average values on geomagnetic latitude in different phases of geomagnetic storms was investigated. The analysis was performed on five storms related to the final stage of the 24th solar cycle in the period of 2015–2018 and was based on the data from eight magnetic observatories located between 40° N and 60°N and 29° E and 158° E. In general, the AM average values are latitude-independent for every storm, as the algorithm takes into account the regional regime of magnetic variations and provides a normalized estimation. At the initial phase, there is a slight decrease in the AM average values with the increasing geomagnetic latitude due to the weakening of the equatorial ring current contribution. In the recovery phase, the AM average value, on the contrary, slightly increase with latitude due to the greater contribution of the polar ionosphere electrojets which occur at the final stage of the storm when approaching the auroral zone. The AM also enables recognition of the storm sudden commencement signal. In determination of magnetically quiet time intervals, AM has advantages over the traditional technique based on the planetary Kp-index. This makes it possible to use AM to study the Sq current system of the low-latitude ionosphere, as well as to select the initial data for constructing models of the main magnetic field.

Keywords: Earth magnetism, magnetic activity, indices of magnetic activity.

References

Agayan S., Bogoutdinov S., Soloviev A., Sidorov R., The study of time series using the DMA methods and geophysical applications, Data Science Journal, 2016, vol. 15, pp. 1-21, doi: dx.doi.org/10.5334/dsj-2016-016

Anad F., Amory-Mazaudier C., Hamoudi M., Bourouis S., Abtout A., Yizengaw E., Sq solar variation at Medea Observatory (Algeria), from 2008 to 2011, Adv. Space Res., 2016, vol. 58, no. 9, pp. 1682-1695. https://doi.org/10.1016/j.asr.2016.06.029

Bartels J., Heck N.H., Johnson H.F., The three-hour-range index measuring geomagnetic activity, Terrestrial Magnetism and Atmospheric Electricity, 1939, vol. 44, no. 4, pp. 411-454

Bello O.R., Rabiu A.B., Yumoto K., Yizengaw E., Mean solar quiet daily variations in the earth’s magnetic field along East African longitudes, Adv. Space Res., 2014, vol. 54, no. 3, pp. 283-289. https://
doi.org/10.1016/j.asr.2013.11.058, ISSN 0273-1177

Chambodut A., Marchaudon A., Lathuillère C., Menvielle M., Foucault E., New hemispheric geomagnetic indices with 15 min time resolution, Journal of Geophysical Research: Space Physics, 2015, vol. 120, no. 11, pp. 9943-9958, doi: 10.1002/2015JA021479

Della-Rose D.J., Sojka J.J., Zhu L., Resolving geomagnetic disturbances using “K-like” geomagnetic indices with variable time intervals, Journal of Atmospheric and Terrestrial Physics, 1999, vol. 61, no. 15, pp. 1179-1194.

Elemo E., Rabiu A., Magnetospheric and ionospheric sources of geomagnetic field variations, Open Access Library Journal, 2014, vol. 1, no. 9, pp. 1-8, https://doi.org/10.4236/oalib.1101035

Geomagnetic data recorded at Geomagnetic Observatory Klimovskaya (IAGA code: KLI), ESDB repository, Geophysical Center of the Russian Academy of Sciences, 2015, doi: 10.2205/kli2011

Geomagnetic data recorded at Geomagnetic Observatory Saint Petersburg (IAGA code: SPG), ESDB repository, Geophysical Center of the Russian Academy of Sciences, 2016, doi: 10.2205/SPG2012

Gonzalez W.D., Joselyn J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M., What is a Geomagnetic Storm? Journal of Geophysical Research: Space Physics, 1994, vol. 99, no. A4,
pp. 5771-5792.

Gvishiani A., Soloviev A., Krasnoperov R., Lukianova R., Automated hardware and software system for monitoring the Earth’s magnetic environment, Data Sci. J., 2016a, vol. 15, 18 р, https://doi.org/10.5334/dsj

Gvishiani A., Sidorov R., Lukianova R., Soloviev A., Geomagnetic activity during St. Patrick’s Day storm inferred from global and local indicators, Russ. J. Earth Sci., 2016b, vol. 16, no. 6, 8 р. ES6007, https://doi.org/10.2205/2016ES000593

Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R., Fuzzy recognition of anomalies in time series, Doklady Earth Sciences, 2008, vol. 421, no. 1, pp. 838-842.

Gvishiani A.D., Agayan S.M., Bogoutdinov Sh.R., Zlotniki J., Bonnin J., Mathematical methods of geoinformatics. III. Fuzzy comparisons and recognition of anomalies in time series, Cybernetics and system analysis, 2008, vol. 44, no. 3, pp. 309-323.

Gvishiani A.D., Lukianova R., Soloviev A., Khokhlov A., Survey of Geomagnetic Observations Made in the Northern Sector of Russia and New Methods for Analysing Them, Surveys in Geophysics, 2014, vol. 35, no. 5, pp. 1123-1154, doi: 10.1007/s10712-014-9297-8

Gvishiani A.D., Lukyanova R.Yu., The study of the geomagnetic field and the problem of accuracy of drilling directional wells in the Arctic region, Gornyi Zhurnal, 2015, no. 10, pp. 94-99, doi: http://
dx.doi.org/10.17580/gzh.2015.10.17

Gvishiani A.D., Lukyanova R.Yu., Evaluation of the influence of geomagnetic disturbances on the trajectory of directional drilling of deep wells in the Arctic region, Physics of the Earth, 2018, no. 4, pp. 19-30, DOI: 10.1134/S0002333718040051

Gvishiani A.D., Soloviev A.A., Sidorov R.V., Krasnoperov R.I., Grudnev A.A., Kudin D.V., Karapetyan D.K., Simonyan A.O., Successes in the organization of geomagnetic monitoring in Russia and neighboring countries. Vestnik ONZ RAN, 2018, no. 10, NZ4001, doi: 10.2205/2018NZ000357

Iyemori T., Araki T., Kamei T., Takeda M., Mid-latitude geomagnetic indices “ASY” and “SYM” for 1999 (provisional), WDC for Geomagnetism, Kyoto, Japan, 2000, 10 р.

Lincoln J.V., Geomagnetic indices, Physics of Geomagnetic Phenomena, 1967, vol. 1, pp. 67-100.

Loewe C.A., Prölss G.W., Classification and mean behavior of magnetic storms, Journal of Geophysical Research: Space Physics, 1997, vol. 102, no. A7, pp. 14209-14213, doi: 10.1029/96JA04020

Love J.J., Chulliat A., An international network of magnetic observatories, Eos. Transactions AGU, 2013, vol. 94, no. 42, pp. 373-384, doi: 10.1002/2013EO420001

Mandrikova O.V., Solovev I.S., Zalyaev T.L., Methods of analysis of geomagnetic field variations and cosmic ray data, Earth, Planets and Space, 2014, vol. 66, no. 1, 148 p, doi: 10.1186/s40623-014-0148-0

Mandrikova O.V., Solovyev I.S., Geppener V.V., Klionskiy D.M., Al-Kasasbeh R.T., Analysis of the Earth’s magnetic field variations on the basis of a wavelet-based approach, Digital Signal Processing, 2013, vol. 23, no. 1, pp. 329-339, doi: 10.1016/j.dsp.2012.08.007

Mayaud P.N., Derivation, meaning and use of geomagnetic indices, Geophysical Monograph Series, 1980. vol. 22, 154 р.

Menvielle M., Berthelier A., The K-derived planetary indices: description and availability, Reviews of Geophysics, 1991, vol. 29, no. 3, pp. 415-432.

Menvielle M., About the derivation of geomagnetic indices from digital data, fmi, 1990, pp. 117-126.

Owolabi T.P., Rabiu A.B., Olayanju G.M., Bolaji O.S., Seasonal variation of worldwide solar quiet of the horizontal magnetic field intensity, Applied Physics Research, 2014, vol. 6, no. 2, pp. 82-94, https://doi.org/10.5539/apr.v6n2p82

Petrov V.G., Indices of geomagnetic activity and their role in the study of solar-terrestrial relations, Astronomy-2018, 2018, pp. 186-189, doi: 10.31361/eaas.2018-2.047

Rangarajan G.K., Indices of geomagnetic activity, Geomagnetism, 1989, vol. 3, pp. 323-384.

Shepherd S.G., Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations, Journal of Geophysical Research: Space Physics, 2014, vol. 119, no. 9, pp. 7501-7521, doi: 10.1002/2014JA020264

Siebert M., Meyer J., Geomagnetic Activity Indices. In: Dieminger W. et al. (eds.) The Upper Atmosphere, Berlin, Heidelberg: Springer-Verlag, 1996, pp. 887-911.

Soloviev A., Agayan S., Bogoutdinov Sh., Estimation of geomagnetic activity using measure of anomalousness, Annals of Geophysics, 2016, vol. 59, no. 6, G0653, doi: 10.4401/ag-7116

Soloviev A., Bogoutdinov S., Gvishiani A., Kulchinskiy R., Zlotnicki J., Mathematical Tools for Geomagnetic Data Monitoring and the INTERMAGNET Russian Segment, Data Science Journal, 2013, vol. 12, pp. WDS114-WDS119, doi: 10.2481/dsj.WDS-019

Soloviev A., Smirnov A., Gvishiani A., Karapetyan J., Simonyan A., Quantification of Sq parameters in 2008 based on geomagnetic observatory data, Advances in Space Research, 2019, vol. 64, is. 11, pp. 2305-2320, doi: https://doi.org/10.1016/j.asr.2019.08.038

Soloviev A.A., Smirnov A.G., Evaluation of the accuracy of modern models of the Earth’s main magnetic field using DMA methods for recognizing reduced geomagnetic activity according to geomagnetic observatories, Physics of the Earth, 2018, no. 6, pp. 72-86, doi: 10.1134/S0002333718060108

Soloviev A., Dobrovolsky M., Kudin D., Sidorov R., Minute values of X, Y, Z components and total intensity F of the Earth's magnetic field from Geomagnetic Observatory Saint Petersburg (IAGA code: SPG), ESDB repository, Geophysical Center of the Russian Academy of Sciences, 2016а, doi: 10.2205/SPG2012min

Soloviev A., Dobrovolsky M., Kudin D., Sidorov R., Minute values of X, Y, Z components and total intensity F of the Earth's magnetic field from Geomagnetic Observatory Klimovskaya (IAGA code: KLI), ESDB repository, Geophysical Center of the Russian Academy of Sciences, 2015, doi: 10.2205/kli2011min

Soloviev A., Kopytenko Yu., Kotikov A., Kudin D., Sidorov R., 2015 definitive data from geomagnetic observatory Saint Petersburg (IAGA code: SPG): minute values of X, Y, Z components and total intensity F of the Earth's magnetic field, ESDB repository, Geophysical Center of the Russian Academy of Sciences, 2016b, doi.org/10.2205/SPG2015min-def

Soloviev A., Kopytenko Yu., Kotikov A., Kudin D., Sidorov R., 2016 definitive data from geomagnetic observatory Saint Petersburg (IAGA code: SPG): minute values of X, Y, Z components and total intensity F of the Earth's magnetic field, ESDB repository, Geophysical Center of the Russian Academy of Sciences, 2017, https://doi.org/10.2205/SPG2016min-def

Stankov S., Stegen K., Warnant R., K-type geomagnetic index nowcast with data quality control, Annals of Geophysics, 2011, vol. 54, no. 3, pp. 285-295, DOI: 10.4401/ag-4655

Takeda M., Contribution of wind, conductivity, and geomagnetic main field to the variation in the geomagnetic Sq field, Journal of Geophysical Research: Space Physics, 2013, vol. 118, no. 7, pp. 4516-4522, https://doi.org/10.1002/jgra.50386

Vichare G., Bhaskar A., Ramesh D.S., Are the equatorial electrojet and the Sq coupled systems? Transfer entropy approach, Advances in Space Research, 2016, vol. 57, no. 9. pp. 1859-1870, https://doi.org/ 10.1016/j.asr.2016.01.020