GEOPHYSICAL RESEARCH, 2020, vol. 21, no. 4, pp. 35-50. https://doi.org/10.21455/gr2020.4-3

UDC 539.4

Abstract  References   Full text (in Russian)

DESTRUCTION OF QUARTZ DIORITE AT FRICTION

V.I. Vettegren(1,2), A.V. Ponomarev(1), V.B. Kulik(2), R.I. Mamalimov(1,2), I.P. Shcherbakov(2)

(1) Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

(2) Ioffe Institute, Russian Academy of Sciences, Saint Petersburg, Russia

Abstract. Using methods of fractoluminescence (with resolution of 2 ns), photoluminescence and Raman spectroscopy, information was obtained on the structure and evolution of defects formed on the surface of nanocracks in low albite and quartz crystals in friction of leucocratic quartz diorite. Before friction, the rock contained 60–70 % of low albite and 15–20 % of quartz with crystal sizes from ≈100 to 800 μm. After friction for about 1 ms, the crystal sizes decreased to 1–3 μm. The concentration of quartz crystals decreased by an order, and of low albite by ≈3 times. In quartz and low albite crystals remaining after destruction, the concentration of defects of Fe3+ ions and ≡Si-O● radicals increased by an order. At fracture, clusters of four cracks having a size of a few nanometers are formed. The average value of the time interval between the occurrence of two successive clusters is ≈60 ns. Nanocracks in clusters are formed one after another after 7–10 ns. It is assumed that cracks are formed when dislocations break through the barriers that arise at the intersection of sliding planes. The growth rate and sizes of nanocracks are determined; the dynamics of their accumulation was studied. The first crack is the largest – the area of its edges in low albite crystals is ≈36 nm2; the area of edges of other nanocracks is ≈18 nm2. In quartz crystals the size of the surface area of the crack edges is three times less, i.e. ≈10 nm2. The Gutenberg-Richter law that is known in seismology and links the number of destruction sources with the energy of their formation, is also fulfilled for nanocracks in low albite.

Keywords: friction, destruction, quartz, low albite, nanocracks.

References

Agranovich V.M., Galanin M.D., Electronic excitation energy transfer in condensed matter, Amsterdam, New York, Oxford: North-Holland publ. company, 1982, 371 p.

Amitrano D., Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value, J. Geophys. Res., 2003, vol. 108, no. B1, 2444. DOI: 10.1029/2001JB000680

Baril M.R., Huntley D.J., Infrared stimulated luminescence and phosphorescence spectra of irradiated feldspars, J. Phys.: Condens. Matter., 2003, vol. 15, no. 46, pp. 8029-8048.

Betekhtin V.I., Kadomtsev A.G., Evolution of microscopic cracks and pores in solids under loading, Phys. Solid State, 2005, vol. 47, is. 5, pp. 825-831. DOI: dx.doi.org/10.1134/1.1924839

Born M., Wolf E., Principles of optics, Second Ed., Oxford: Pergamon press, 1964, 856 p.

Cheremskoi P.G., Slezov V.V., Betekhtin V.I., Pory v tverdom tele (Pores in a solid), Moscow: Energo-atomizdat, 1990, 376 p. [in Russian].

Cottrell A.H., Theory of Crystal Dislocations, New York: Gordon and Breach, 1964, 91 p.

De Boer K., Jansen A.P.J., van Santen R.A., Watson G.W., Parker S.C., Free Energy calculations of thermodynamic, elastic and structural, Physical Review. B, 1996, vol. 54, no. 2, pp. 826-835.

Etchepare J., Merian M., Smetankme L., Vibrational normal modes of SiO2. I. α and β quartz, J. Chem. Phys., 1974, vol. 60, pp. 1873-1876.

Gottstein G., Physical Foundations of Materials Science, Berlin: Springer, 2004, 502 p.

Götze J., Application of cathodoluminescence microscopy and spectroscopy in geosciences, Microsc. Microanal., 2012, vol. 18, pp. 1270-1284, doi: 10.1017/S1431927612001122.

Gutenberg B., Richter C., Seismicity of the Earth and Associated Phenomena, Princeton, N.J.: Princeton Univ. Press, 1954, 295 p.

Huntley D.J., Baril M.R., Haidar S., Tunnelling in plagioclase feldspars, J. Phys. D: Appl. Phys., 2007, vol. 40, no. 3, pp. 900-906.

Huntley D.J., Godfrey-Smith D.I., Thewalt M.L.W., Optical dating of sediments, Nature, 1985, vol. 313, pp. 105-107, doi.org/10.1016/0277-3791(88)90032-7

Kalceff M.A.S., Phillips M.R., Cathodoluminescence microcharacterization of the defect structure of quartz, Phys. Rev. B., 1995, vol. 52, pp. 3122-3134.

Katz M.Ya., Simanovich I.M., Quartz of crystalline rocks (Mineralogical Characteristics and Density Properties), Proceedings of the Geological Institute, Moscow: Science, 1974, is. 259, 230 p.

Lei X., Ma S., Laboratory acoustic emission study for earthquake generation process, Earthq Sci., 2014, vol. 27, no. 6, pp. 627-646, doi: 10.1007/s11589-014-0103-y.

Lockner D.A., Byerlee J.D., Kuksenko V., Ponomarev V., Sidorin A., Observations of Quasi-static Fault Growth from Acoustic Emissions, International Geophysics, Academic Press, 1992, vol. 51, pp. 3-31.

Martelli G., Smith P.N., Woodward A.J., Light, radiofrequency emission and ionization effects associated with rock fracture, Geophys. J. Int., 1989, vol. 98, no. 2, pp. 397-401, doi: 10.1111/j.1365-246X. 1989.tb03362.x

McKeown D.A., Raman spectroscopy and vibrational analyses of albite: From 25 °C through the melting temperature, American Mineralogist, 2005, vol. 90, pp. 1507-1517.

Orlov A.N., Vvedenie v teoriyu defektov v kristallakh (Introduction to the theory of defects in crystals), Moscow: Vysshaya shkola, 1983, 144 p. [in Russian].

Petrov V.A., Bashkarev A.Ya., Vettegren' V.I., Fizicheskie osnovy prognozirovaniya dolgovechnosti konstruktsionnykh materialov (Physical foundations of predicting the durability of structural materials), St-Petersburg: Politekhnika, 1993, 475 p. [in Russian].

Regel' V.R., Slutsker A.I., Tomashevskii E.E., Kineticheskaya priroda prochnosti tverdykh tel (The kinetic nature of the strength of solids), Moscow: Nauka, 1974, 560 p. [in Russian].

Scholz C.H., The mechanics of earthquakes and faulting. Cambridge: Cambridge Univ. Press, 2019, 493 p.

Schumann W., Gemstones of the world, New York: Sterling Pub. Co., 1997, 272 p.

Shaocheng J., Mainprice D., Natural deformation fabrics of plagioclase: implications for slip systems and seismic anisotropy, Tectonophysics, 1988, vol. 147, pp. 145-163.

Smirnov V.B., Ponomarev A.V., Stanchits S.A., Potanina M.G., Patonin A.V., Dresen G., Narteau C., Bernard P., Stroganova S.M., Laboratory modeling of aftershock sequences: stress dependences of the Omori and Gutenberg–Richter parameters, Izvestiya. Physics of the Solid Earth, 2019, vol. 55, no. 1, pp. 124-137.

Sobolev G.A., Ponomarev A.V., Fizika zemletryasenii i predvestniki (Earthquake physics and precursors), Moscow: Nauka, 2003, 270 p. [in Russian].

Stünitz H., Gerald J.D.F., Tullis J., Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals, Tectonophys., 2003, vol. 372, is. 3-4, pp. 215-233.

Turro N.J., Ramamwrte V., Scaiano J.C., Modern Molecular Photochemistry, Columbia University: University Sci. Press, 2010, 1085 p.

Velde B., Syono Y., Kikuchi M., Boyer H., Raman Microprobe Study of Synthetic Diaplectic Plagioclase Feldspars, Phys. Chem. Minerals, 1989, vol. 16, pp. 436-441.

Vettegren V.I., Kadomtsev A.G., Shcherbakov I.P., Mamalimov R.I., Kulik V.B., Formation of Nanoscale Cracks and Fractoluminescence upon Destruction of Carbon Ceramics, Phys. Solid State, 2020c, vol. 62, pp. 2089-2093.

Vettegren' V.I., Mamalimov R.I., Shcherbakov I.P., Kulik V.B., Formation of Silicon Nanocrystals under Friction, Phys. Solid State, 2020а, vol. 62, pp. 1210-1213, doi: 10.1134/S1063783420070276

Vettegren' V.I., Ponomarev A.V., Mamalimov R.I., Shcherbakov I.P., Nanocracks upon Fracture of Quartz, Izvestiya, Physics of the Solid Earth, 2020b, vol. 56, no. 6, pp. 827-832.

Vettegren' V.I., Ponomarev A.V., Arora K., Raza H., Mamalimov R.I., Shcherbakov I.P., Fokin I.V., Nanosecond Dynamics of the Destruction of Heterogeneous Natural Bodies by Friction, Phys. Solid State, 2018, vol. 60, pp. 2300-2304, doi: 10.1134/S1063783418110355

Vettegren' V.I., Ponomarev A.V., Shcherbakov I.P., Mamalimov R.I., The influence of the structure of a nanocrystalline solid (sandstone) on the dynamics of microcrack accumulation on friction, Phys. Solid State, 2017c, vol. 59, is. 8, pp. 1580-1583, doi: dx.doi.org/10.1134/S1063783417080315

Vettegren' V.I., Ponomarev A.V., Shcherbakov I.P., Mamalimov R.I., Destruction dynamics of a heterogeneous body (diorite) under friction, Phys. Solid State, 2017b, vol. 59, is. 11, pp. 2286–2289, doi: https://doi.org/10.1134/S1063783417110312

Vettegren' V.I., Ponomarev A.V., Mamalimov R.I., Shcherbakov I.P., Formation of Microcracks in a Heterogeneous Solid (Sandstone) under the Influence of Friction, Phys. Solid State, 2019a, vol. 61, pp. 1259-1262, doi: dx.doi.org/10.1134/S1063783419070291

Vettegren' V.I., Ponomarev A.V., Mamalimov R.I., Shcherbakov I.P., Arora K., Srinagesh D., Chadha R.K., Microcracks in Basalt and Tonalite at Friction, Izvestiya, Phys. Solid Earth, 2019b, vol. 55, is. 6, pp. 879-885, doi: dx.doi.org/10.1134/S1069351319060090

Vettegren' V.I., Sobolev G.A., Ponomarev A.V., Shcherbakov I.P., Mamalimov R.I., Nanosecond Dynamics of Destruction of the Surface Layer of a Heterogeneous Nanocrystalline Solid (Sandstone) under the Friction, Phys. Solid State, 2017a, vol. 59, is. 5, pp. 955-959, doi: dx.doi.org/10.1134/S1063783417050298

Vladimirov V.I., Fizicheskaya priroda razrusheniya metallov (The physical nature of the destruction of metals), Moscow: Metallurgiya, 1984, 280 p. [in Russian].

Wiemer S., Wyss M., Mapping spatial variability of the frequency-magnitude distribution of earthquakes, Adv. Geophys., 2002, vol. 45, pp. 259-302.

Zakrevskii V.A., Shuldiner A.V., Electron emission and luminescence owning plastic deformation of ionic crystals, Phil. Mag. B., 1995, vol. 71, no. 2, pp. 127-138.

Zhurkov S.N., Kuksenko V.S., Petrov V.A., Physical principles of prediction of mechanical disintegration, Soviet Physics. Doklady RAS, 1981, vol. 259, no. 26, pp. 755-757.