GEOPHYSICAL RESEARCH, 2020, vol. 21, no. 3, pp. 50-65. https://doi.org/10.21455/gr2020.3-4
UDC 550.380+550.8.04+550.8.028
Abstract References Full text (in Russian)
IT-INFRASTRUCTURE OF GEOMAGNETIC OBSERVATORY NETWORK
I.M. Aleshin(1,2), S.D. Ivanov(1), V.N. Koryagin(1), I.V. Matveev(1), F.V. Perederin(1), A.A. Soloviev(1,2), K.I. Kholodkov(1)
(1) Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
(2) The Geophysical Center of the Russian Academy of Sciences, Moscow, Russia
Abstract. The purpose of the presented research is the development of a modern information infrastructure for a regional (or a segment of a global) network of geomagnetic observatories, allowing to automate the acquisition, storage and distribution of measurement data as much as possible, including their transmission in real time. We discuss the solution for a number of tasks necessary for the implementation of such a system. In particular, a number of technical aspects of developing a system for geomagnetic data acquisition such as accuracy of the time stamp setting and the choice of a protocol for operational transfer of measurements, including in real time are considered.
SeedLink protocol is compared to MQTT protocol with detailed description. The paper also includes the implementation of infrastructure for operational acquisition of geomagnetic measurement results based on the SeedLink protocol. Besides, there is a brief description of the structure of the Data Aggregation Center and a review of a functioning model of a geomagnetic observatory with FGE and POS-1 measuring devices, ADC module Seisar-5 and a data logger based on a single-board computer.
Keywords: INTERMAGNET, one-second data logging, operational data transfer, SeedLink, MQTT, geomagnetic observatory.
References
Aleshin I.M., Burguchev S.S., Kholodkov K.I., Perederin F.V., Soloviev A.A., Software for realtime acquisition of geomagnetic data and station management, Russ. J. Earth. Sci., 2016, vol. 16, no. 5, ES5004. DOI: 10.2205/2016ES000582
Aleshin I.M., Burguchev S.S., Perederin F.V., Kholodkov K.I., Versatile Geophysical Data Acquisition System, Seismic Instrument, 2018, vol. 54, no. 5, pp. 562-564.
Aleshin I.M., Getmanov V.G., Grudnev A.A., Dobrovolsky M.N., Ivanov S.D., Koryagin V.N., Krasnoperov R.I., Kudin D.V., Perederin F.V., Soloviev A.A., Kholodkov K.I., Compact energy efficient online data logger for real time geomagnetic measurements, Nauchnoe priborostroenie, 2018, vol. 28, no. 3, pp. 5-13.
Aleshin I.M., Vasiliev A.E., Kholodkov K.I., Perederin F.V., Virtual private network technologies in real-time geophysical data collection systems, Seismic Instruments, 2015, vol. 51, no. 1, pp. 44-47.
Bracke S., Gonsette A., Rasson J., Poncelet A., Hendrickx O., Automated observatory in Antarctica: real-time data transfer on constrained networks in practice, Geoscientific Instrumentation. Methods and Data Systems, 2017, vol. 6, no. 2, pp. 285-292.
Chulliat A., Savary J., Telali K., Lalanne X., Acquisition of 1-second data in IPGP magnetic observatories, Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing: U.S. Geological Survey Open-File Report 2009–1226, 2009, pp. 54-59. DOI: 10.3133/ofr20091226
Csontos A., Hegymegi L., Heilig B., Temperature tests on modern magnetometers. / Publs. Inst. Geophys. Pol. Acad. Sc. 2007, vol. 99, pp. 171-177.
Fluxgate magnetometer. Manual. Technical University of Denmark, 2014. Rev. 01/4-2014.
INTERMAGNET Technical Reference Manual v4.6 ed.: Benoît St-Louis., 2012.
Ivanov S.D., Aleshin I.M., Koryagin V.N., Perederin F.V., Kholodkov K.I., Geophysical Data Aggregation Center IPE RAS, CEUR Workshop Proceedings. Proceedings of the V International Conference Information Technologies in Earth Sciences and Applications for Geology, Mining and Economy (ITES&MP-2019) Moscow, October 14-18, 2019, vol. 2527, pp. 47-51.
Love J.J., Magnetic monitoring of Earth and space, Physics Today, 2008, vol. 61, no. 2, p. 31.
Matveev I.V., Matveeva N.V., SEISAR-5 Portable Seismic Recorder with Low Energy Consumption for Autonomous Operation in Harsh Climatic Conditions, Seismic Instruments, 2018, vol. 54, no. 6, pp. 626-630. DOI: 10.3103/S0747923918060087
Morschhauser A., Haseloff J., Bronkalla O., Müller-Brettschneider C., Matzka J., A low-power data acquisition system for geomagnetic observatories and variometer stations, Geoscientific Instrumentation. Methods and Data Systems, 2017, vol. 6, no. 2, pp. 345-352.
Pedersen L.W., Merenyi L., The FGE Magnetometer and the INTERMAGNET 1 Second Standard, J. Ind. Geophys. Union, 2016, vol. 2, pp. 30-36.
Peltier A., Chulliat A., On the feasibility of promptly producing quasi-definitive magnetic observatory data, Earth Planet, 2010, vol. 62, pp. e5–e8. DOI: 10.5047/eps.2010.02.002
Perederin F.V., Aleshin I.M., Ivanov S.D., Mikhailov P.S., Pogorelov V.V., Kholodkov K.I., Portable GNSS Signal Recording System with a High Sampling Rate: Field Tests and Application Forecasts, Seismic Instruments, 2019, vol. 55, no. 6, pp. 720-726. DOI: 10.3103/S0747923919060069
Perederin F.V., Aleshin I.M., Kholodkov K.I., Burguchev S.S., Soloviev A.A., Software implementation of remote operation of the recording and real time transmission of geomagnetic data, Seismicheskie pribory (Seismic Instruments), 2016, vol. 52, no. 4, pp. 76-82. [in Russian].
Reda J., Neska M., The One Second data collection system in Polish geomagnetic observatories, The Journal of Indian Geophysical Union, 2016, no. 2, pp. 62-66.
Sapunov V., Denisov A., Denisova O., Saveliev D., Proton and Overhauser magnetometers metrology, Contributions to Geophysics & Geodesy, 2001, vol. 31, no. 1, pp. 119-124.
Soloviev A.A., Lukianova R.Y., Dobrovolsky M.N., Sidorov R.V., Krasnoperov R.I., Kudin D.V., Grudnev A.A., Acquisition and systematization of information for database on extreme geomagnetic conditions, Geoinformatics research papers, 2017, vol. 5, BS5003, DOI: 10.2205/2017BS044
Turbitt C., St-Louis B., Rasson J., Matzka J., Stewart D., Lalanne X., Schwarz G., Shanahan T., INTERMAGNET Definitive One-second Data Standard, INTERMAGNET Technical Note TN6, 2014, vol. 1, 7 p.