GEOPHYSICAL RESEARCH, 2018, vol. 19, no. 3, pp. 73-88. https://doi.org/10.21455/gr2018.3-5
UDC 550.370
Abstract References Full text (in Russian)
ELECTROKINETICS PROPERTIES OF SANDSTONES BY THE ONE- AND TWO-FLOWS LABORATORY TESTS
V.L. Barabanov
Institute of Oil and Gas Research of the Russian Academy of Sciences, Moscow, Russia
Abstract. Experiments for the estimation of electrokinetic parameters porous sand rocks were carried out by stationary single-flow of water and stationary water-oil mixes. The values of ζ–potentials of double electric layer, streaming potential and electroosmotic coefficient were determined. These estimations agree with other known experimental works. Monotonic decreasing of electrokinetic parameters during the increasing of pressure gradient was fixed by two-phase flow experiments with the change of sign. This effect account for specific absorption potential-formed ions and partial hydrofobization of the mineral surface.
Keywords: rocks, electrokinetics, streaming potential, water flow, two-phase flow, ζ-potential, laboratory experiments.
References
Ageeva O.A., Svetov B.S., Sherman G.Kh., Shipulin S.V. Seismoeletric effect II type on rocks (by the laboratory tests). Geology and Geophysics, 1990, vol. 40, no. 8, pp. 1251-1257.
Altunina L.K., Kuvshinov V.A. Uvelichenie neftejndachi plastov kompozitsiiymi PAV (Oil discovery enhancement by PAV-composes). Moscow, Nauka, 1995.
Antraygues P., Aubert M. Self-potential generated by two-phase flow in a porous medium: experimental study and volcanological applications, J. Geophys. Res., 1993, vol. 98, pp. 22273-22281.
Bagdoev A.G., Shekoyn A.V. Non-linear acoustic-electric waves in porous media saturated by electro-conductivity liquids. Non-linear World, 2008, vol. 6, no. 5-6, pp. 314-323.
Blokhin A.M., Semenko R.E. The hydrodynamics of water-oil layered systems under electric currents, in Problemy mekhaniki: teoria, experiment i novye tekhnologii (Problems of mechanics: theory, experiment and new technologies), Novosibirsk, 2007, p. 50.
Bo M.W., Choa V., Zeng X.Q. Laboratory investigation on electro-osmosis properties of singapore marine clay, Soils and Foundations, 2001, vol. 41, no. 5, pp. 15-23.
Bogomolov L.M., Sychev V.N., Zakupin A.S., Mubassarova V.A., Harovyshnoy V.A. Elecro-physics field of damage process using laboratory tests and geophysics observations, in Fizicheskie osnovy prognozirovania razpushenia gornykh porod (Physical base for the prediction of rock damage), Apatity, 2016, p. 19.
Chernyak G.Ya. On physical origin of seismoelectric effects in rocks. Izv. Phys. Solid Earth, 1976, no. 2, pp. 108-112.
Davis J., James R., Leckie J. Surface ionization and complexation at the oxide interface, J. Colloid. Interface Sci., 1978, vol. 63, pp. 480-499.
Dolgov D.V. Physics phenomena in oil layers on micro-scale under action of electric current, in Teoria i practika primenenia metodov uvelichenia nefteotdachi plastov (Theory and practices of methods for oil recovery), vol. 2, Moscow: VNIIneft, 2009, pp. 26-32.
Donner R.V., Potirakis S.M., Balasis G., Eftaxias K., Kurths J. Temporal correlation pattern in pre-seismic electromagnetic emissions reveal distinct complexity profiles prior to major earthquakes, Phys. and Chem. Earth. Pts A.B.C., 2015, vol. 85-86, pp. 44-55.
Du Q., Li J., Li X., Zeng Z. Precursory abnormal characteristics of geoelectic field: a case study of seismostation in 625 Research Institute of aviation industry corporation of China, Earth Science – J. of China Univ. of Geosciences, 2014, vol. 39, no. 12, pp. 1851-1852.
Enomoto Y. Coupled interaction of earthquake nucleation with deep Earth gases: a possible mechanism for seismo-electromagnetic phenomena, Geophys. Jour. Inter., 2012, vol. 19, pp. 1210-1214.
Fatykhov M.A. Flow of high viscosity oil by electromagnetic fields. Engineering and Physical Journal, 2004, vol. 77, no. 2, pp. 13-16.
Frenkel Ya.I. Kineticheskay teoria zhidkostey (Kinetics theory of liquids), St. Peter.: Nauka, 1975.
Fujinawa Y., Noda Y. Characteristics of seismoelectric waves fields associated with natural microcracks, Pure and Appl. Geophys., 2016, vol. 173, no 1, pp. 255-268.
Geindreal C., Auriault J.-L. Magnetohydrodynamic flow through porous media, C. R. Acad. Sci. Paris., 2001, vol. 329, Serie IIb, pp. 445-450.
Gennadinik B.I. Stream potentials in heterogeneous medium. Izv. Phys. Solid Earth, 1990, no. 7, pp. 102-106.
Glover P., Meredith P., Sammonds P., Murell S. Ionic surface conductivity in sandstone, J. Geophys. Res., 1994, vol. 99, pp. 21635-21650.
Guan W., Hu H., Zheng X. Theoretical simulation of the multipole seismoelectric logging while drilling, Geophys. J. Int., 2013, vol. 195, no. 2, pp. 1239-1250.
Guan W., Yin C., Wang J., Cui, Hu H., Wang Z. Theoretical study on the amplitude ratio of the seismoelectric field to the Stoneley wave and the formation tortuosity estimation from seismoelectric logs, Geophys. J. Int., 2015, vol. 203, no. 3, pp. 2277-2286.
Jian Y., Yang L., Liu Q. Time periodic electro-osmotic flow through a microannulus, Physics of Fluids, 2010, vol. 22, no. 4, pp. 042001-1-9.
Jiang Y., Shan F., Jin H., Zhou L., Sheng P. A method for measuring electrokinetic coefficients of porous media and its potential application in hydrocarbon exploration, Geophys. Res. Lett., 1998, vol. 25, no. 10, pp. 1581-1584.
Jougnot D., Rubino J., Carbajal M., Linde N., Holliger K. Seismoelectric effects due to mesoscopic heterogeneities, Geophys. Res. Lett., 2013, vol. 40, no. 10, pp. 2033-2037.
Kachakhidze M.K., Kachakhidze N.K., Kaladze T.D. A model of the generation of electromagnetic emissions detected prior to earthquakes, Phys. and Chem. Earth. Pts A.B.C., 2015, vol. 85-86, pp. 78-81.
Khabibulin I.L. Specific properties of viscosity liquids flows under electromagnetic action. Works of Bashkir’s University, 1999, no. 2, pp. 15-16.
Khair A.S., Squires T.M. The influence of hydrodynamic slip on the electroforetic mobility of a spherical colloidal particle, Physics of Fluids, 2009, vol. 21, no. 4, pp. 042001-1-14.
Kondrat V., Tvardovska S. The influence of external electric field on parameters of seismic frequency mechanical waves in porous saturated media, Physical and Mathematical modeling and information technology, 2009, no. 10, pp. 56-65.
Kushwan V., Tiwari R., Gaur M., Tiwari R.K. Initial results of bio-potential (seismic electric signal) related to seismic activities, Acta Geophys., 2013, vol. 61, no. 4, pp. 935-949.
Kuznetsov O.L., Simkin A.M. Preobrazovanie i vzaimodeystvie geofizicheskikh poley v litosfere (Transformation and interaction of geophysical fields in lithosphere), Moscow: Nedra, 1990.
Long L., Rivers W. Field measurement of electroseismic response, Geophysics, 1975, vol. 40, no. 2, pp. 233-245.
Lorne B., Frederic P., Avouac J.-Ph. Streaming potential measurements. 1. Properties of the electrical double layer from crushed rock samples, J. Geophys. Res., 1999, vol. 104, no. В8, pp. 17857-17877.
Lorne B., Frederic P., Avouac J.-Ph. Streaming potential measurements. 2. Relationship between electric and hydraulic flow patterns from rock samples during deformation, J. Geophys. Res., 1999, vol. 104, no. В8, pp. 17879-17896.
Matsushima M., Honkura Y., Kuriki M., Ogawa Y. Circular polarized electric fields associated with seismic waves generated by blasting, Geophys. J. Inter., 2013, vol. 194, pp. 200-211.
Migunov N.I. The influence of rocks elecrokinetic properties on the velocity of seismoelectric signals. Izv. Phys. Solid Earth, 1978, no. 5, pp. 52-56.
Moyne C., Murad M.A. Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure, Inter. J. Solids and Structures, 2002, vol. 39, pp. 6159-6190.
Natiyganov V.L., Skibitskiy A.N. Hydroelectromagnetic mechanisms for forming of light precursors of earthquakes, in Volny i vikhri v slozhnykh sredakh (Waves and whirls in coupled media), Moscow, 2013, pp. 116-118.
Nikolaevsky V.N. Geomekhanika i fluidodinamika (Geomechanics and fluidodynamics), Moscow: Nedra, 1996.
Nyussik Ya.M., Komov I.L. Electrokhimia v geologii (Electrochemics in geology), St. Peterburg: Nauka, 1981.
Panakhov G.M., Mirzadjanov R.R. Electro-rheological features of flow of complicate systems, Proc. of IMM of Azerbaijan, 1999, vol. X (XVIII), pp. 249-256.
Pantellev I.A., Gavrilov V.A. Numerical modeling of the behavior of electric-kinetic current under forming of tectonic earthquake by borehole geoacoustic measurements, in XII Conference for fundamental problems of theoretic and applied mechanics, Kazan, 2015, p. 217.
Ren H., Huang Q., Chen X. Existence of evanescent electromagnetic waves resulting from seismoelectric conversion at a solid-porous interface, Geophys. J. Int., 2016, vol. 204, no. 1, pp. 147-166.
Revil A., Darot M., Pezard P.A. From surface electrical properties to spontaneous potential on porous media, Surveys in Geophysics, 1996, vol. 17, pp. 331-346.
Revil A., Pezard P.A., Glover E. Streaming potential in porous media. 1. Theory of the zeta potential, J. Geophys. Res., 1999, vol. 104, pp. 20021-20031.
Roubinet D., Linde N., Jougnot D., Irving J. Streaming potential modeling in fractured rock: insights into the identification of hydraulically active fractures, Geophys. Res. Lett., 2016, vol. 43, no. 10, pp. 4937-4944.
Saiykhov F.L., Kovaleva L.A., Nasyrov N.M. Thermo- and mass-transfer in the system of borehole-layer under electromagnetic action of mass oil fields, Engineering and Physical J., 2002, vol. 75, no. 1, pp. 95-99.
Sava P., Revil A. Virtual electrode current injection using seismic focusing and seismoelectric conversion, Geophys. J. Inter., 2012, vol. 191, pp. 1205-1209.
Shelukhin V.V., Amira Yu.V. On flow of electrolytes through porous medium. Applied Mechanics and Theoretical Physics, 2008, vol. 49, no. 4, pp. 162-173.
Sobolev G.A., Demin V.M. Mekhanoelectricheskie yavlenia v Zemle (Mechanic-electrical phenomena in the Earth), Moscow: Nauka, 1980.
Surkov V.V., Pilipenko V.A. Estimate of ULF electromagnetic noise caused by fluid flow during seismic or volcano activity, Annals of Geophysics, 2015, vol. 58, no. 6, S0655; doi: 10.4401/ag-6767
Svetov B.S., Gubatenko V.P. Electromagnetic field by mechanoelectric origin in porous water-saturated rocks. I. The formulation of problem. Izv. Phys. Solid Earth, 1990, no. 10, pp. 67-73.
Valova O.V. Mathematical model of thermo-mass transfer in rocks by electro-osmotic flow, Modern technologies. System analysis. Modeling, 2001, no. 1, pp. 70-77.
Wang J., Guan W., Hu H.-S., Zhu Z. Electrokinetic experimental studies in borehole model: localized and radiated seismoelectric field, Chinese Journal of Geophysics, 2016, vol. 59, no. 1, pp. 381-390.
Warden S., Garambois S., Jouniaux L., Brito D., Sailhac P., Bordes C. Seismoelectric wave propagation numerical modeling in partially saturated materials, Geophys. J. Int., 2013, vol. 194, no 3, pp. 1498-1513.
Warden S., Garambois S., Sailhac P., Jouniaux L., Bano M. Curvelet-based seismoelectric data processing, Geophys. J. Int., 2012, vol. 190, no. 3, pp. 1533-1550.
Zeygarnic V.A., Novikov V.A., Okunev V.I., Klyuchkin V.N. Seismic triggered potential of electric current through earth fault, in Fizicheskie osnovy prognozirovania razpushenia gornykh porod (Physical base for the prediction of rock damage), Apatity, 2016, pp. 21-22.