GEOPHYSICAL RESEARCH, 2018, vol. 19, no. 3, pp. 41-56. https://doi.org/10.21455/gr2018.3-3
UDC 550.347
Abstract References Full text (in Russian)
THE UPPER CRUST VELOCITY STRUCTURE OF THE GULF OF FINLAND AND SURROUNDING BASED ON THE AMBIENT NOISE SURFACE WAVE TOMOGRAPHY
T.Yu. Koroleva(1), B.A. Assinovskaya(2)
(1) St. Petersburg State University, St. Petersburg, Russia
(2) Pulkovo Seismic Station, Federal Research Center of the Geophysical Survey of Russian Academy of Sciences, St. Petersburg, Russia
Abstract. In this work we study the high-speed structure of the upper crust of the Gulf of Finland region and its surroundings using the method of noise surface-wave tomography. For this, noise records of 16 broadband seismic stations located in the region and its vicinity were used. The cross-correlation functions of ambient noise calculated for station pairs allowed us to construct the dispersion curves in a period range of 2–20 s. The maps of group velocity distribution for separate periods were obtained using a 2D-tomography method. Then the inverse problem of reconstruction the S-wave velocity from the dispersion curve of the surface wave was solved. The initial approximation was chosen on the basis of the analysis of the Sovetsk–Kohtla-Jarve velocity profile obtained by the DSS method. The velocity sections were searched in the form of a piecewise-constant function, the number of layers for the crust was set equal to five, the thickness of the layers and the velocity in them varied. The resulting vertical velocity sections were presented in the form of lateral variations of the velocity for some depth ranges. As a result of the work, the structure of the crust in the area of transition from the Fennoscandian shield to the Russian plate to the depths of 16 km was refined. On the map for a depth interval of 0–2 km, the change in the velocity VS from 3.1 to 3.4 km/s is due to the influence of the sedimentary cover and the transition from the crystalline basement rocks to the Devonian low-speed sandy-clay sediments. The velocity anomalies here coincide with the orientation of the geological structures in the area of transition from the Fennoscandian Shield to the Baltic syneclise. Two high-velocity blocks are detected in the depth of 2–8 km, the first one with VS 3.5–3.6 km/s in the north and the second with VS 3.4–3.5 km/s in the south. The border between them marks the bondary of the shield and the Russian plate. The area of reduced velocities probably exists in the region of the seismogenic Pskov-Paldisky deformation zone. The crust is uniform with only one monolithic block of VS 3.7–3.8 km on the depth of 8–16 km. The existence of the graben of the Gulf of Finland suggested by some researchers was not confirmed by the results obtained.
Keywords: seismotomography (surface wave tomography), ambient seismic noise, shear wave, dispersion curve, geological section, deep structure, rock.
References
Airo M.-L., Säävuori H., Petrophysical characteristics of Finnish bedrock, Concise handbook on the physical parameters of bedrock, Geological Survey of Finland, 2013, Report of investigation, 205, 33 p.
All T., Puura V., Vaher R., Orogenic structures of the Precambrian basement of Estonia as revealed from the integrated modelling of the crust, Proc. Estonian Acad. Sci. Geol., 2004, vol. 53, no. 3, pp. 165-189.
Ankudinov S., Sadov A., Brio H., Crustal structure of Baltic countries on the basis of deep seismic sounding, Proc. Estonian Acad. Sci. Geol., 1994, vol. 43, no. 3, pp. 129-136.
Assinovskaya B.A., Ovsov M.K., Seismotectonic zoning of the Finnish–Bothnia region based on the structural analysis method, Russian journal of Earth Sciences, 2014, vol. 14, Es2005, Doi: 10.2205/2014es000542
Bensen G.D., Ritzwoller M.H., Barmin P., Levshin A.L., Lin F.C., Moschetti M.P., Shapiro N.M., Yang Y., Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 2007, vol. 169, pp. 1239-1260.
Bensen G.D., Ritzwoller M.H., Shapiro, N.M., Broadband ambient noise surface wave tomography across the United States, J. Geophys. Res., 2008, vol. 113, B05306, doi: 10.1029/2007JB005248
Bogdanova S., Gorbachev R., Skridlaite G., Soesoo A., Taran L., Kurlovich D., Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna, Precambrian Research, 2015, vol. 259, pp. 5–33.
Brenguier F., Shapiro N.M., Campillo M., Nersessian A., Ferrazini V., 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlation, Geophys. Res. Lett., 2007, vol. 34, L02305, doi: 10.1029/2006GL028586.
Cho K.H., Herrmann R.B., Ammon C.J., Lee K., Imaging the upper crust of the Korean Peninsula by surface-wave tomography, Bulletin of the Seismological Society of America, 2007, vol. 97, 1B, pp. 198-207, doi: 10.1785/0120060096
Geologia I poleznie iskopaemie Rossii, v 6 tomach. Zapad Rossiii Ural. Kn.1. Zapad Rossii (Geology and minerals of Russia, In six volumes, T. 1, West of Russia and the Urals. Book. 1, The West of Russia) eds. B.V. Petrov, V.P. Kirikov, St. Petersburg: VSEGEI, 2006, 528 p.
Gosudarstvennaja geologicheskaya karta Rossiiskoy Federacii masshtaba 1:1 000 000 (3 pokolenie), Centralno –Evropeiskaya seria. List O-35 (Pskov) – (N-35) – O-35 (Sankt-Peterburg).Geologicheskaya karta dochetvertichnich obrazovanii. Pod redakziei V.P. Kirikova. List 2. Schema geologicheskogo stroenija dovendskich obrazovanii (State geological map of the Russian Federation at a scale of 1: 1 000 000 (third generation). The Central European series. Sheet O-35 (Pskov) – (N-35) – O-35 (St. Petersburg). Geological map of pre-Quaternary formations. Ed. by V.P. Kirikov. Sheet 2. Scheme of geological stratification of the pre-Vendian formations). St. Petersburg: VSEGEI, 2012.
Ditmar P., Yanovskaya T., A generalization of the Backus-Gilbert Method for estimation of lateral variations of surface wave velocity, Izvestiya. Physics of the Solid Earth, 1987, vol. 23, no. 6. pp. 30-40.
Janik T., Upper Lithospheric Structure in the Central Fennoscandian Shield: Constraints from P- and S-Wave Velocity Models and VP/VS Ratio Distribution of the BALTIC Wide-Angle Seismic Profile, Acta Geophysica, 2010, vol. 58, no. 4, pp. 543-586.
Kang T.S. & Shin J.S., Surface-wave tomography from ambient seismic noise of accelerograph networks in southern Korea, Geophys. Res. Lett., 2006, vol. 33, pp. 1-5. doi: 10.1029/2006GL027044
Karabanov A.K., Garezki P.G., Aizberg R.E., Neotectonika i neogeodinamika zapada Vostochno-Evropeiskoy platformi. (Neotectonics and neogeodynamics of the west of the East European platform). Belarusian science, 2009. 183 p.
Kirs J., Puura V., Soesoo A., Klein V., Konsa M., Koppelmaa H., Niin M., Urtson K., The crystalline basement of Estonia: rock complexes of the Palaeoproterozoic Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations, Estonian Journal of Earth Sciences, 2009, vol. 58, no. 4, pp. 219-228.
Koistinen T., (editor) Precambrian basement of the Gulf of Finland and surrounding area, 1:1 mln, 1994, Geological Survey of Finland, Espoo.
Koslovskaya E., Kosarev G., Aleshin I and Riznichenko O., Structure and composition of the crust and upper mantle of the Archean-Proterozoic boundary in the Fennoscandian shield obtained by joint inversion of receiver function and surface wave phase velocity of recording of the SVEKALAPKO array, Geophys. J. Int., 2008, vol. 175, pp. 135-152, doi: 10.1111/j.1365-246X2008.03876.x
Koroleva, T.Yu., Yanovskaya, T.B., Patrusheva S.S., Implication of seismic noise for determining the structure of the upper Earth rock mass, Izvestia Physics of Solid Earth, 2009, vol. 45, no. 5, pp. 369-380.
Koroleva T.Yu., Yanovskaya T.B., Patrusheva S.S., Velocity structure of the upper mantle of the East European Platform according to seismic noise data, Izvestia Physics of Solid Earth, 2010, vol. 46, no. 10, pp. 839-848.
Lin F.C., Moschetti M.P., Ritzwoller M.H., Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps, Geophys. J. Int., 2008, vol. 173, pp. 281-298.
Lobkis O.I., Weaver R.L., On the emergence of the Green’s function in the correlations of a diffuse field, J. Acoust. Soc. Am., 2001, vol. 110, pp. 3011-3017.
Moschetti M.P., Ritzwoller M.H., Shapiro N.M., Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps, Geochemistry, Geophysics, Geosystems, 2007, vol. 8, no. 8. Q08010, doi: 10.1029/2007, GC001655
Nikonov A.A., Finskii zaliv riftogennja structura?! In Tektonika igeofizika litosferi/ materiali XXXV Tektonicheskogo sovechshania, T. 2 (Is a Gulf of Finland rift structure?! Tectonics and geophysics of lithosphere, materials of the XXXV Tectonic Meeting, T. 2) Moscow: GEOS, 2002, pp. 70-74.
Sabra K.G., Roux P., Kuperman W.A., Emergence rate of the time-domain Green’s function from the ambient noise correlation function , J. Acoust. Soc. Am., 2005, vol. 118, pp. 3524-3531.
Shapiro N.M., Campillo M., Emergence of broadband Rayleigh waves from correlation of the ambient seismic noise, Geophys. Res. Lett., 2004, vol. 31. L07614, doi: 10.1029/2004GL019491
Shapiro N.M., Campillo M., Stehly L., Ritzwoller M.H., High-resolution surface-wave tomography from ambient seismic noise, Science, 2005, vol. 307, pp. 1615-1618.
Stehly L., Fry, B., Campillo M., Shapiro N.M, Gilbert J., Boschi I., Giardini D., Tomography of Alpine region from observation of seismic ambient noise, Geophys. J. Int., 2009, vol. 178, pp. 338-350.
Soesoo A., Puura V., Kirs J., Petersell V., Niin M., All T., Outlines of the Precambrian basement of Estonia, Proc. Estonian Acad. Sci. Geol., 2004, vol. 53, no. 3, pp. 149-164.
Villasenor A., Yang Y., Ritzwoller M. H., Gallart J., Ambient noise surface wave tomography of the Iberian Peninsula: Implications for shallow seismic structure, Geophys. Res. Lett., 2007, vol. 34, L11304, doi: 10.1029/2007gl030164
Yanovskaya T.B., Poverchnostno-volnovaja tomographia v seismologicheskich issledovaniach (Surface Wave Tomography in Seismological Studies), Saint Petersburg: Nauka, 2015, 167 p.
Yanovskaya T.B., Ditmar P.G., Smoothness criteria in surface wave tomography, Geophys. J. Int., 1990, vol. 102, no. 1, pp. 63-72.
Yang Y., Zheng Y., Chen J., Zhou S., Ni J., Sandvol E., Ritzwoller M.H., Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography, Geochemistry, Geophysics, Geosystems, 2010, vol. 11, Q08010, pp. 18, doi: 10.1029/2010GC003119
Yang Y., Ritzwoller M.H., Levshin A.L., Shapiro N.M., Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int., 2007, vol. 168, pp. 259-274.
Zheng S., Sun X., Song X., Yang Y., Ritzwoller M.H., Surface wave tomography of China from ambient seismic noise correlation, Geochemistry, Geophysics, Geosystems, 2008, vol. 9, Q05020, doi: 10.1029/ 2008GC001981