GEOPHYSICAL RESEARCH2018, vol. 19, no. 3, pp. 5-22.

UDC 523.42:551

Abstract  References   Full text (in Russian)


A.V. Batov(1,2), T.V. Gudkova(2), V.N. Zharkov(2)

(1) V.A. Trapeznikov Institute of Control Sciences RAS, Moscow, Russia

(2) Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

Abstract. It is shown that in calculations of the Martian interiors stresses, it is reasonable to apply the gravitational field data in the expansion of spherical harmonics up to the 90th order and degree (MRO120D and GMM-3 models). A comparative analysis of stresses based on these models is carried out. Stress estimates are calculated in the interiors of the planet under local topography structures, these areas are of interest to reveal the zones of possible marsquakes sources.

Keywords: gravitational field, topography, tension-compression stresses, shear stresses, Mars.


Audet P. Toward mapping the effective elastic thickness of planetary lithosphères from a spherical wavelet analysis of gravity and topography, PEPI, 2014, vol. 226, pp. 48-82.

Banerdt W.B., Phillips R.J., Sleep N.H., Saunders R.S. Thick shell tectonics ob one plate planets: application to Mars, JGR, 1982, vol. 87, B12, pp. 9723-9734.

Banerdt W.B., Smrekar S., Lognonné P., Spohn T., Asmar S.W., Banfield D., Boschi L., Christensen U., Dehant V., Folkner W., Giardini D., Goetze W., Golombek M., Grott M., Hudson T. , Johnson C., Kargl G., Kobayashi N., Maki J., Mimoun D., Mocquet A., Morgan P., Panning M., Pike W.T., Tromp J., van Zoest T., R Weber., Wieczorek M.A., Garcia R., and Hurst K. InSight: a discovery mission to explore the interior of Mars,  Lunar and Planetary Science Conference, 2013, vol. 44, pp. 1915.

Belleguic V., Lognonné P., and Wiezorek M. Constraints on the Martian lithosphere from gravity and topography data, J. Geophys. Res., 2005, vol. 110, E11005. doi: 10.1029/2005JE002437

Beuthe M., Le Maistre S., Rosenblatt P., Pätzold M., and Dehant V. Density and lithospheric thickness of the Tharsis Province from MEX MaRS and MRO gravity data, J. Geophys. Res., 2012, vol. 117, pp. 1-32.

Chuikova N.A., Nasonova L.P., and Maksimova T.G. Anomalies of density, stresses, and the gravitational field in the interior of Mars. Moscow Univ. Phys. Bull., 2012, vol. 67, no. 2. pp. 218-225.

Chujkova N.A., Nasonova L.P., and Maximova T.G. Density, stress, and gravity anomalies in the interiors of the earth and mars and the probable geodynamical implications: comparative analysis, Izv. Phys. Solid Earth, 2014, vol. 50, no. 3. pp. 427-443.

Genova A., Goossens S., Lemoine F.G., Mazarico E., Neumann G.A., Smith D.E., and Zuber M.T. Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science, Icarus, 2016, vol. 272, pp. 228-245.

Grott M. and Wieczorek M.A. Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data, Icarus, 2012, vol. 211, pp. 43-52.

Gudkova T.V., Batov A.V., and Zharkov V.N. Model estimates of non-hydrostatic stresses in the Martian crust and mantle: 1. Two-level model, Sol. Syst. Res., 2017, vol. 51, no. 6, pp. 457-478.

Konopliv A.S., Asmar S.W., Folkner W.M., Karatekin Ö., Nunes D.C., Smrekar S.E., Yoder C.F., and Zuber M.T. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters, Icarus, 2011, vol. 211, pp. 401-428.

Konopliv A.S., Park R.S., and Folkner W.M. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data, Icarus, 2016, vol. 274, pp. 253-260.

Koshlyakov E.M. and Zharkov V.N. On gravity field of Mars. Sol. Syst. Res., 1993, vol. 27, no. 2, pp. 12-21.

Manukin A.B., Kalinnikov I.I., Kalyuzhny A.V., and Andreev O.N. High-sensitivity three-axis seismic accelerometer for measurements at the spacecraft and the planets of the solar system, 2016, Abstract 7ms3, IKI RAN.

Marchenkov K.I. and Zharkov V.N. Stresses in the Venus crust and the topography of the mantle boundary, Sol. Astron. Lett., 1989, vol. 16, no. 1, pp. 77-81.

Marchenkov K.I., Lyubimov V.M., and Zharkov V.N. Calculation of load factors for deeply buried density anomalies, Doklady Earth  Science Sections, 1984, vol. 279, pp. 14-16.

Panning M.P., Lognonne Ph., Banerdt W.B., Garsia R., Golombek M., Kedar S., Knapmeyer-Endrun B., Mocquet A., Teanby N.A., Tromp J., Weber R., Beucler E., Blanchette-Guertin J.-F., Drilleau M., Gudkova T., Hempel S., Khan A., Lekic V., Plesa A.-C., Rivoldini A., Schmerr N., Ruan Y., Verhoeven O., Gao C., Christensen U., Clinton J., Dehant V., Giardini D., Mimoun D., Pike W.T., Smrekar S., Wieczirek M., Knapmeyer M., and Wookey J. Planned products of the Mars structure service for the InSight mission to Mars, Space Science Rev., 2017. DOI: 10.1007/s11214-016-0317-5

Pauer M. and Breuer D. Constraints on the maximum crustal density from gravity–topography modeling: Applications to the southern highlands of Mars, EPSL, 2008, vol. 276, pp. 253-261.

Phillips R.J. and Lambeck K. Gravity fields of the terrestrial planets: Long-wavelength anomalies and tectonics, Rev. Geophys. Space Phys., 1980, vol. 18, pp. 27-76.

Rebetskiy Yu.L. Tektonicheskie napryazheniya i prochnost prirodnykh massivov. (Tectonic stresses and strength of natural massifs), Moscow: Academkniga, 2007.

Sjogren W.L. and Wimberley R.M. Mars: Hellas planitia gravity analysis, Icarus, 1981, vol. 45, pp. 331-338.

Smith D.E., Zuber M.T., Frey H.V., Garvin J.B., Head J.W., Muhleman D.O., Pettengill G.H., Phillips R.J., Solomon S.C., Zwally H.J., Banerdt W.B., Duxbury T.C., Golombek M.P., Lemoine F.G., Neumann G.A., Rowlands D.D., Aharonson O., Ford P.G., Ivanov A.B., Johnson C.L., McGavern P.J., Abshire J.B., Afzal R.S., Sun X.  Mars orbiter laser altimeter: experimental Summary After the first year of global mapping of Mars, J. Geophys. Res.: Planets, 2001, vol. 106, no. 10, pp. 23689-23722.

Tenzer R., Eshagh M., Jin S.  Martian sub-crustal stress from gravity and topographic models, Earth Planet. Sci. Lett., 2015, vol. 425, pp. E01009.

Wieczorek M.A. Gravity and Topography of the Terrestrial Planets, Treatise on Geophysics, 2nd edition, 2015, vol. 10, pp. 153-193.

Wieczorek M.A., Zuber M.T. The thickness of the martian crust: improved constraints from geoid-to-topography ratios, J. Geophys. Res., 2004, vol. 109 (E1), pp. 153-193.

Zharkov V.N. and Gudkova T.V. On model structure of gravity field of Mars, Sol. Syst. Res., 2016, vol. 50, pp. 250-267.

Zharkov V.N. and Marchenkov K.I. The correlation of tangential stresses in the Venus lithosphere with surface structures, Astron. Vestn., 1987, vol. 21, no. 2, pp. 170-175.

Zharkov V.N., Gudkova T.V., and  Batov A.V. On estimating the dissipative factor of the Martian Interior, Sol. Syst. Res., 2017, vol. 51, no. 6, pp. 479-490.

Zharkov V.N., Gudkova T.V., Molodensky S.M. On models of Mars’ interior and amplitudes of forced nutations. 1. The effects of deviation of Mars from its equilibrium state on the flattening of the core-mantle boundary, PEPI, 2009, vol. 172, pp. 324-334.

Zharkov V.N., Koshlyakov E.M., and Marchenkov K.I. Composition, structure and gravitational field of Mars, Sol. Syst. Res., 1991, vol. 25, pp. 515-547.

Zharkov V.N., Marchenkov K.I., and Lyubimov V.M. The long-wave tangential stresses in the lithosphere and mantle of Venus, Astron. Vestn., 1986, vol. 20, no. 3, pp. 202-211.