GEOPHYSICAL RESEARCH2018, vol. 19, no. 2, pp. 34-56. https://doi.org/10.21455/gr2018.2-2

UDC 550.343.6

Abstract  References   Full text (in Russian)  Full text (in English)

ESTIMATING AFTERSHOCK AREA BASED ON THE MAINSHOCK INFORMATION 

S.V. Baranov(1), P.N. Shebalin(2)

(1) Kola Branch of Federal Research Center Unified Geophysical Survey, RAS, Apatity, Russia

(2) Institute of Earthquake Prediction Theory and Mathematical Geophysics, RAS, Moscow, Russia

Abstract. The paper considers the task of quick estimating an area where aftershocks are expected after a strong earthquake using information about its mainshock. The suggested approach is based on the hypotheses by Y. Kagan that geometrical parameters of earthquake focal zones are self-similar. This hypothesis allows one to extend scaling relation connecting an earthquake magnitude and its fault size to the aftershock area size. The research data are ANSS Comprehensive Catalog (ComCat) provided by USGS and GCMT catalog that contains seismic moment tensors and fault plane solutions of earthquakes. We used data for 1975–2016 covering the whole Earth. It is shown that scaling relation Rµ100.5Mm (Mm is a mainshock magnitude, R is a distance from the mainshock to the most remote aftershock) is satisfied independently on time after the mainshock and the type of its focal mechanism. This relation allows modeling an aftershock area by a circle centered at the mainshock epicenter and radius that depends on the mainshock magnitude. The radiuses of circles, where aftershocks with magnitudes exceeding given values are expected with probabilities of 95 and 99%, are estimated for different time intervals after the mainshock and types of its focal mechanism. It is also proposed the way to evaluate the aftershock activity area, if the mainshock fault plane is known. In this case, the shape reminds a “stadium” being an area of the points equally-spaced from the line segment. The results obtained can be used in practice for estimating an area, where strong repeated shocks are expected after a strong earthquake.

Keywords: mainshock, aftershocks, scaling relation, fault plane solution, aftershock area.

References

Baranov S.V. and Shebalin P.N. Forecasting Aftershock Activity: 1. Adaptive Estimates Based on the Omori and Gutenberg-Richter Laws. Izv., Phys. Solid Earth, 2016, vol. 52, no. 3, pp. 413-431, doi: 10.1134/S1069351316020038

Baranov S.V. and Shebalin P.N. Forecasting Aftershock Activity: 2. Estimating area of strong aftershock occurrence. Izv., Phys. Solid Earth, 2017, vol. 2, pp. 366-384, doi: 10.7868/S0002333717020028

Bath M. Lateral inhomogeneities in the upper mantle, Tectonophysics, 1965, vol. 2, pp. 483-514.

Delouis B. and Legrand D. Focal Mechanism Determination and Identification of the Fault Plane of Earthquakes Using Only One or Two Near-Source Seismic Recordings, Bull. Seismol. Soc. Am., 1999, vol. 89, no. 6, pp. 1558-1574.

Ekström G., Nettle M., and Dziewonski A.M. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Int., 2012, vol. 200-201, pp. 1-9, doi: 10.1016/j.pepi.2012.04.002

Gutenberg B. and Richter C.F. Earthquake magnitude, intensity, energy, and acceleration, Bull. Seismol. Soc. Am., 1956, vol. 46, pp. 105-145.

Henry C. and Das S. Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations, Geophys. J. Int., 2001. vol. 147, pp. 272-293.

Kagan Y. Aftershock zone scaling, Bull. Seismol. Soc. Am., 2002, vol. 92, no. 2, pp. 641-655.

Kaku R. Theoretical Shape of Aftershock Area, J. Seismol. Soc. Japan, 1985, vol. 38, no. 3, pp. 343-349.

Kanamori H. and Anderson D. Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am., 1975, vol. 65, no. 5, pp. 1073-1095.

Kostrov B.V. Seismic moment and energy of earthquakes, and seismic flow rock. Izv., Earth Physics, 1974, vol. 1, pp. 23-40.

Marsan, D. and Lengline O. A new estimation of the decay of aftershock density with distance to the mainshock, J. Geophys. Res., 2010, vol. 115, B09302, doi: 10.1029/2009JB007119

Miller S.A. Earthquake scaling and the strength of seismogenic faults, Geophys. Res. Lett., 2002, vol. 29, no. 10, doi: 10.1029/2001GL014181

Molchan G.M. and Dmitrieva O.E. Aftershock identification: review and new approaches. Computational seismology, 1991, is. 24, pp. 19-50.

Molchan G.M. and Dmitrieva O.E. Aftershock identification: methods and new approaches, Geophys. J. Int., 1992, vol. 109, pp. 501-516.

Narteau C., Shebalin P., and Holschneider M. Temporal limits of the power law aftershock decay rate, J. Geophys. Res., 2002, vol. 107, no. B12, doi: 10.1029/2002JB001868

Narteau C., Shebalin P., Hainzl S., Zöller G., and Holschneider M. Emergence of a band-limited power law in the aftershock decay rate of a slider-block model, Geophys. Res. Lett., 2003, vol. 30, no. 11, pp. 22-1–22-4, doi: 10.1029/2003GL017110

Smirnov V.B. Predictive anomalies of the seismic regime. I. Methodological basis for preparing initial data. Geofizicheskie issledovaniya (Geophysical Research), 2009, vol. 10, no. 2, pp. 7-22.

Tajima F. and Kanamori H. Global Survey of aftershock area expansion patterns, Phys. Earth Planet. Int., 1985, vol. 40, pp. 77-134, doi: 10.1016/0031-9201(85)90066-4

Tsuboi C. Earthquake Energy, Earthquake Volume, Aftershock Area, and Strength of the Earth’s Crust, J. Phys. Earth, 1956, vol. 4, pp. 63-66.

Utsu T. A Statistical study on the occurrence of aftershocks, Geophysical Magazine, 1961, vol. 30, pp. 521–605.

Utsu, T., Ogata Y., and Matsu’ura R. The centenary of the Omori formula for a decay law of aftershocks activity, J. Phys. Earth, 1995, vol. 43, pp. 1-33.

Utsu.T., Seki A. Relation between the Area of the Aftershock Region and the Energy of the Mainshock, J. Seismol. Soc. Japan, 1954, vol. 7, pp. 233-240.

Wells D.L. and Coppersmith K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 1994, vol. 84, no. 4, pp. 974-1002.

Wu W.-N., Zhao L., and Wu Y.-M. Empirical Relationships between Aftershock Zone Dimensions and Moment Magnitudes for Plate Boundary Earthquakes in Taiwan. Bull. Seismol. Soc. Am., 2013, vol. 103, no. 1. pp. 424-436, doi: 10.1785/0120120173