GEOPHYSICAL RESEARCH, 2018, vol. 19, no. 1, pp. 5-16. https://doi.org/10.21455/gr2018.1-1
UDC 550.344
Abstract References Full text (in Russian)
PONDEROMOTIVE FORCES OF THE ION CYCLOTRON WAVES AT FREQUENCIES OF 0.1–0.2 Hz IN THE AREA OF MAGNETIC HOLES ON THE EARTH’S MAGNETOSPHERE DAYSIDE
A.K. Nekrasov, F.Z. Feygin
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
Abstract. Ponderomotive effects due to electromagnetic ion cyclotron waves in the frequency band pulsations Pc 2 (0.1–0.2 Hz) in two-ion (proton and helium ) plasma is investigated. Near day boundaries of the magnetosphere in the presence of a certain density helium ions ponderomotive force leads to a significant increase in density of the background plasma in magnetic field minimum (magnetic hole), located symmetrically relative to the equator. When increasing the density of the helium ions is the increasing influence of ponderomotive forces on the change in the density of the background plasma.
Keywords: magnetosphere, ponderomotive force, magnetic field, protons, ions of helium, magnetic holes.
References
Antonova A.E. and Shabanskii V.P. The magnetic field structure at large distances from the Earth, Geomagn. Aeron., 1968, vol. 8, pp. 801-805.
Antonova A.E., Shabanskii V.P., and Hedgcok P.S. A comparison of the magnetic field empirical model, based on the HEOS-1, 2 data, with the analytical two-dipole model of the magnetosphere, Geomagn. Aeron., 1983, vol. 23, pp. 697-699.
Buneman O. Dissipation of currents in ionized media, Phys. Rev., 1959, vol. 115, pp. 503-517.
Carlqvis P. and Boström R. Space charge regions above the aurora, J. Geophys. Res., 1970, vol. 75, pp.7140-7146.
Carpenter D.L. and Anderson R.R. An ISEE/ whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 1992, vol. 97, pp. 1097-1108.
Chappel C.R. Detached plasma regions in the magnetosphere, J. Geophys. Res., 1974, vol. 79, pp. 1861-1870.
Denton R.E., Takahashi K., Galkin I.A., Nsumei P.A., Huang X., Reinisch B.W., Anderson R.R., Sleeper M.K., and Hughes W.J. Distribution of density along magnetospheric field lines, J. Geophys. Res., 2006, vol. 111, A04213, doi: 10.1029/2005JA011414.
Dyrud L.P., Engebretson M.J., Posch J.L., Hughes W.J., Fukunishi H, Arnoldy R.L., Newell P.T., and Horne R.B. Ground observations and possible source regions of two types of Pc 1-2 micropulsations at very high latitudes, J. Geophys. Res., 1997, vol. 102, no. A 12, pp. 27011-27027.
Feygin F.Z., Pokhotelov O.A., Pokhotelov D.O., Mursula K., Kangas J., Braysy T., and Kerttula R. Effect of heavy ions on pondedromotive forces due to ion cyclotron waves, J. Geophys. Res., 1998, vol. 103, pp. 20481-20486.
Ginzburg V.L. The propagation of electromagnetic waves in plasmas, Oxford: Pergammon Press, 1964.
Guglielmi A.V., Pokhotelov O.A., Stenflo L., and Shukla P.K. Modification of the magnetospheric plasma due to ponderomotive forces, Astrophys. Space Sci., 1993, vol. 200, pp.91-96.
Guglielmi A.V. and Pokhotelov O.A. Nonlinear problems of physics of the geomagnetic pulsations, Space Sci. Rev., 1994, vol. 65, pp. 5-57.
Guglielmi A.V., Pokhotelov O.A., Feygin F.Z., Kurchashov Yu.P., McKenzie J.F., Shukla P.K., Stenflo L., and Potapov A.S. Ponderomotive wave forces in longitudinal MHD waveguides, J. Geophys. Res., 1995, vol. 100, pp. 7997-8002.
Hudson M.K., Lysak R.L., and Mozer F.S. Magnetic field-aligned potential drops due to electrostatic ion cyclotron turbulence, Geophys. Res. Lett., 1978, vol. 5, no. 2, pp. 143-146.
Kaye S.M. and Kivelson M.G. Observations of Pc 1-2 waves in the outer magnetosphere, J. Geophys. Res., 1979, vol. 84, pp. 4267-4276.
Kruer W.L., Kaw P.K., Dawson J.M., and Oberman C. Anomalous high frequency resistivity of a plasma, Phys. Rev. Lett., 1970, vol. 24, doi: https://doi.org/10.1103/PhysRevLett.24.987
Lemaire J. Plasma distribution models in a rotating magnetic dipole and refilling of plasmaspheric flux tubes, Phys. Fluids B, 1989, vol. 1, pp.1519-1525.
Nekrasov A.K. and Feygin F.Z. Ponderomotive action of ULF pulsations in the magnetospheric plasma, Physica Scripta, 2005, vol. 71, pp. 310-313.
Nekrasov A.K. and Feygin F.Z. Effect of the thermal pressure on upward plasma fluxes due to ponderomotive force of Alfven waves, Nonlinear Process. Geophys., 2011, vol. 18, pp. 235-241.
Nekrasov A.K. and Feygin F.Z. Nonlinear plasma density modification by the ponderomotive force of ULF pulsations at the dayside magnetosphere, Astrophys. Space Sci., 2012, vol. 341, pp. 225-230.
Nekrasov A.K. and Feygin F.Z. Effect of the ponderomotive force caused by Alfvén waves on a background plasma in the dayside magnetosphere, Geomagn. Aeron., 2016, vol. 56, no. 4, pp. 441-447.
Persoon A.M., Gurnett D.A., Santolik O., Kurth W.S., Faden J.B., Groene J.B., Lewis G.R., Coates A.J., Wilson R.J., Tokar R.L., Wahlund J.-E., and Moncuquet M. A diffusive equilibrium model for the plasma density in Saturn’s magnetosphere, J. Geophys. Res., 2009, vol. 114, A04211. doi: 10.1029/2008JA013912.
Pokhotelov O.A., Feygin F.Z., Stenflo L., and Shukla P.K. Density profile modifications by electromagnetic ion-cyclotron wave pressures near the dayside magnetospheric boundary, J. Geophys. Res., 1996, vol. 101, pp. 10827-10833.
Polovin R.V. and Demutsky V.P. Osnovy magnitnoi gidrodinamiki (Fundamentals of magnetohydrodynamics), Moscow: Energoatomizdat, 1987.
Vedenov A.A. Teoriya turbulentnoi plazmy (Theory of turbulent plasma), Moscow: VINITI, 1965.
Washimi H. and Karpman V. I. On the ponderomotive force of a high frequency electromagnetic field in a dispersive medium, Sov. Phys. JETP, 1976, vol. 44, pp. 528-534.