GEOPHYSICAL RESEARCH2017, vol. 18, no. 2, pp. 83-94. DOI: 10.21455/gr2017.2-6

UDC 550.384

Abstract  References  Full text (in Russian)


N.V. Salnaia(1), Y. Gallet(2), A. Genevey(3), O.N. Glazunova(4), D.A. Gavryushkin(1)

(1) Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

(2) Institut de Physique du Globe de Paris- Sorbonne Paris Cité - Université Paris Diderot, CNRS, Paris, France

(3) Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Paris, France

(4) Institute of Archaeology, Russian Academy of Sciences, Moscow, Russia

Abstract. We report on new archeointensity results from two groups of baked-clay tiles sampled in New Jerusalem Monastery, Moscow region (Russia). These groups of fragments are precisely dated of respectively 1680-1690 AD (NJ01) and 1710-1720 AD (NJ02). All archeointensity measurements were carried out using the experimental protocol developed for the Triaxe magnetometer, which allows magnetization measurements directly at high temperatures. Mean intensity values derived at the group level are obtained from 5 (NJ01) and 4 (NJ02) different fragments. We analyzed 4 to 7 specimens per fragment using two cooling rates (25°C/minute and 2°C/minute) for laboratory thermoremanent magnetization acquisition. We show that the cooling rate effect is statistically insignificant in our intensity determinations. Implications of these data are twofold. First, they do not argue for a regular decrease of the dipole field moment over the past four centuries. Second, they appear in relatively good agreement with the field intensity variations observed in Western Europe, suggesting the absence of a significant non-dipole field effect over Europe. However, further development of archeomagnetic study in the European part of Russia is necessary to confirm these preliminary conclusion.

Keywords: archeomagnetism, archeointensity, secular variation, dipole, Europe.


Biggin A.J., Peterson G.A., A new set of qualitative criteria to aid inferences on palaeomagnetic dipole moment variations through geological time, Earth science, 2014, vol. 2, art. 24. doi: 10.3389/feart.2014.00024

Brown  M.C., Donadini F., Korte M., Nilsson A., Korhonen K., Lodge A., Lengyel S.N. and Constable C.G., GEOMAGIA50.v3: 1. General structure and modifications to the archeological and volcanic database, Earth Planets Space, 2015, vol. 67, pp. 1-31, doi: 10.1186/s40623-015-0232-0.

Burlatskaya S.P., Change in geomagnetic field intensity in the last 8500 years, according to global archeomagnetic data, Geomagn. Aeron., Engl. Transl., 1970, no. 10, pp. 544-548.

Burlatskaya S.P., Nachasova I.E., Didenko E.J. and Shelestun N.K., Archeomagnetic determinations of geomagnetic field elements of the USSR Academy of Sciences, Soviet Geophysical Committee of the USRR Academy of Sciences, 1986, pp.168.

Coe R.S., Paleointensities of the Earth’s magnetic field determined from tertiary and quaternary rocks. J. Geophys. Res., 1967, vol. 72, pp. 3247-3262.

Constable C. and Korte M., Is Earth’s magnetic field reversing? Earth Planet. Sci. Lett., 2006, vol. 246, pp. 1-6.

Donadini F., Kovacheva M., Kostadinova M., Casas L., and Pesonen L.J., New archaeointensity results from Scandinavia and Bulgaria Rock-magnetic studies inference and geophysical application, Phys. Earth Planet. Inter., 2007, vol. 165, pp. 229-247.

Finlay C.C., Historical variation of the geomagnetic axial dipole, Phys. Earth Planet. Inter., 2008, vol. 170, pp. 1-14.

Gallet Y., Le Goff M., High-temperature archeointensity measurements from Mesopotamia, Earth and Planetary Science Letters, 2006, vol. 241, pp. 159-173.

Genevey A., Gallet Y., Constable C.G., Korte M., Hulot G., ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment, Geochemistry, Geophisics, Geosystems, 2008, vol. 9, no. 4, pp. 1-23.

Genevey A., Gallet Y., Rosen J., and Le Goff M., Evidence for rapid geomagnetic field intensity variations in Western Europe over the past 800 years from new French archeointensity data, Earth Planet. Sci. Lett., 2009, vol. 284, pp. 132-143.

Genevey A., Gallet Y., Thébault E., Jesset S., and Le Goff M., Geomagnetic field intensity variations in Western Europe over the past millennium, Geochemistry, Geophysics, Geosystems, 2013, vol. 14,  no. 8, pp. 2858-2872.

Le Goff M., Gallet Y., A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations. Earth Planet. Sci. Lett., 2004, vol. 229, pp. 31-43.

Gubbins D., Jones A.L., and Finlay C.C., Fall in Earth's Magnetic Field Is Erratic, Science, 2006, vol. 312, pp. 900-902.

Hartmann G., Genevey A., Gallet Y., Trindade R., Etchevarne C., Le Goff M., Afonso M.C., Archeointensity in Northeast Brazil over the past five centuries, Earth and Planetary Science Letters, 2010, vol. 296, pp. 340–352.

Jackson A., Jonkers A., and Walker M., Four centuries of geomagnetic secular variation from historical records, Philos. Trans. R. Soc. Lond. Ser. A, 2000, vol. 358, pp. 957-990.

Kovacheva M., Boyadziev Y., Kostadinova-Avramova M., Jordanova N., Donadini F., Updated archeomagnetic data set of the past eight millenia from the Sofia laboratory, Bulgaria, Geochem. Geophys. Geosyst., 2009, vol. 10, pp. 1-6. Q05002, doi: 10.1029/2008GC002347.

Korte M., Constable C., Donadini F., Holme R. Reconstructing the Holocene geomagnetic field, Earth and Planetary Science Letters, 2011, vol. 312, pp. 497-505.

Nachasova Y.E., Magnetic field in the Moscow area from 1480 to 1840, Geomagn, Aeron., Engl. Transl., 1972, no. 12, pp. 277-280.

Pesonen L.J., Leino M.A.H., Nevanlinna H., Archaeomagnetic intensity in Finland during the last 6400 years: Evidence for a latitude-dependent nondipole field at approximately AD 500, J. Geomagn. Geoelectr., 1995, vol. 47, pp. 19-40.

Thellier E., and Thellier O., Sur l’intensite´ du champ magne´tique terrestre dans le passe´ historique et ge´ologique, Ann. Geophys., 1959, vol. 15, pp. 285-378.