GEOPHYSICAL RESEARCH, 2016, vol. 17, no. 3, pp. 32-44. DOI: 10.21455/gr2016.3-3

UDC 550.344.42, 551.510.535, 537.87

Abstract  References  Full text (in Russian)  Full text (in English)


M.S. Solovieva(1), A.A. Rozhnoi(1), S.L. Shalimov(1,2), B.W. Levin(3),
G.V. Shevchenko(3), V.B. Gurianov(3)

(1) Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

(2) Space Research Institute, Russian Academy of Sciences, Moscow, Russia

(3) Institute of Marine Geology and Geophysics, Far East Branch, Russian Academy of Sciences, Yuzhno-Sakhalinsk, Russia 

Abstract. The observations of the very low frequency (VLF) electromagnetic signals at stations in Russia (Petropavlovsk-Kamchatsky and Yuzhno-Sakhalinsk) and Japan (Moshiri) have been used to analyze the response of the lower ionosphere to the tsunamis triggered by the Kuril, 2006, Japan, 2011 and Chile, 2010, earthquakes. A significant decrease in the amplitude (about 10–15 dB) together with phase variations of up to 40 degrees relative to the normal signal level have been found after the earthquakes during the tsunami wave propagation along the path transmitter–receiver. The analysis of the VLF signal was carried out for nighttime observations when the ionosphere is more sensitive to external factors than the sunlit ionosphere. The results of analysis of the VLF observations were compared to the sea-level measurements from Japanese network of GPS buoys situated along Japan coastline for the Japan tsunami and with data from the Deep-ocean Assessments and Reporting of Tsunamis (DART) stations situated in the Pacific Ocean near Hawaiian Islands and offshore Kamchatka for the Chilean tsunami. The analysis of spectral characteristics of VLF variations has shown good coincidence of the frequency maxima with in-situ data of sea-level oscillations (8–50 min). The results of the work confirm that the detected lower ionosphere perturbations are likely generated by the tsunami-driven internal gravity waves. 

Keywords: tsunami, sub-ionospheric electromagnetic signals, the lower ionosphere, internal gravity waves.



Artru J., Ducic V., Kanamori H., Lognonne P., and Murakami M. Ionospheric detection of gravity waves induced by tsunamis, Geophys. J. Int., 2005, vol.160, pp. 840–848, doi:10.1111/j.1365-246X.2005.02552.x.

Barr R., Jones D. Llanwyn, and Rodger C. J. ELF and VLF radio waves, J. Atmos. Sol. Terr. Phys., 2000, vol.62, pp. 1689–1718.

Coïsson P., Occhipinti G., Lognonné P., and Rolland L. M. Tsunami signature in the ionosphere: the innovative role of OTH radar, Radio Sci., 2011, vol. 46. RS0D20, doi:10.1029/2010RS004603.

Galvan D.A., Komjathy A., Hickey M. P., and Mannucci A. J. The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content, J. Geophys. Res., 2011, vol. 116. A06318, doi:10.1029/2010JA016204.

Hickey M. P., Schubert G., Walterscheid R. L. Atmospheric airglow fluctuations due to a tsunami-driven gravity wave disturbance, J. Geophys. Res., 2010, vol. 115. A06308, doi:10.1029/2009JA014977.

Hines C. O. Gravity waves in the atmosphere, Nature, 1972, vol. 239, pp. 73– 78.

Komjathy A., Galvan D. A., Stephens P., Butala M. D., Akopian V., and Wilson B., Verkhoglyadova O., Mannucci A. J., Hickey M. Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study, Earth Planets Space, 2012, vol. 64, N 12, pp. 1287–1294, doi:10.5047/eps.2012.08.003.

Makela J., Lognonne P., Hébert H., Gehrels T., Rolland L., Allgeyer S., Kherani A., Occhipinti G., Astafyeva E., Coïsson P., Loevenbruck A., Clévédé E., Kelley M. C., and Lamouroux J. Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011, Gephys. Res. Lett., 2011, vol. 38. L00G02, doi:10.1029/2011GL047860.

Najita K., Weaver P., and Yuen P. A tsunami warning system using an ionospheric technique, Proc. IEEE, 1974, vol. 62, no. 5, pp. 563–577.

Occhipinti G., Coïsson P., Makela J. J., Allgeyer S., Kherani A., Hébert H., and Lognonne P. Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere, Earth Planet. Sci., 2011, vol. 63, pp. 847–851, doi:10.5047/eps.2011.06.051.

Occhipinti G., Kherani A., and Lognonné P. Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves, Geophys. J. Int., 2008, vol. 173, N 3, pp. 753-765, doi: 10.1111/j.1365-246X. 2008.03760.x.

Occhipinti G., Lognonné P., Kherani E. A., and Hébert H. Three dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 2006, vol. 33. L20104, doi:10.1029/2006GL026865.

Peltier W. R. and Hines C. O. On the possible detection of tsunamis by a monitoring of the ionosphere, J. Geophys. Res., 1976, vol. 81, pp. 1995-2000, doi:10.1029/0JGREA000081000C12001995000001.

Rolland L. M., Occhipinti G., Lognonné P., and Loevenbruck A. Ionospheric gravity waves detected offshore Hawaii after tsunamis, Geophys. Res. Lett., 2010, vol. 37. L17101, doi:10.1029/2010GL044479.

Rozhnoi A., Shalimov S., Solovieva M., Levin B. W., Hayakawa M., and Walker S. N. Tsunami-induced phase and amplitude perturbations of subionospheric VLF signals, J. Geophys. Res., Space Physics 2012, vol. 117. A09313, doi:10.1029/2012JA017761.

Rozhnoi A., Shalimov S., Solovieva M., Levin B., Shevchenko G., Hayakawa M., Hobara Y., Walker S. N., and Fedun V. Detection of tsunami-driven phase and amplitude perturbations of subionospheric VLF signals following the 2010 Chile earthquake, J. Geophys. Res. Space Physics, 2014, vol. 119, 5012–5019, doi:10.1002/2014JA019766.

Shalimov S.L., Ionosphere above tsunami, Nauchno-tehnicheskaya revolutsia (Scientific-Technical Revolution), 2013, vol.92, no. 4, pp. 3-18.

Shevchenko Georgy, Ivelskaya Tatiana, Loskutov Artem, and Shishkin Alexander. The 2009 Samoan and 2010 Chilean Tsunamis Recorded on the Pacific Coast of Russia, Pure Appl. Geophys., 2012, vol. 170, N 9-10, pp. 1511-1527, doi 10.1007/s00024-012-0562-9.