Aftershock process of Tuva earthquake of 27.12.2011

Category: 14-1
S.V. Baranov, V.I. German, V.G. Oseev

 

UDC 550.34

 

S.V. Baranov(1), V.I. German(2), V.G. Oseev(2)

 

(1) Kola Branch of Geophysical Survey of Russian Academy of Sciences, Apatity, Russia

(2) Krasnoyarsk Research Institute of Geology and Minerals, Krasnoyarsk, Russia

 

Abstract

The paper considers an aftershock process of the Tuva earthquake occurred on 27.12.2011 in the Altai-Sayan Plicate Area (ASPA) and provides some results of macroseismic inspection. To reveal peculiarities and similarities, we considered aftershock sequences of thee Bussingolosk and Ureg-Nursk earthquakes occurred before in ASPA. Based on the modeling by means of relaxation models and trigger seismicity models some general properties and specialties of the three aftershock processes were revealed. It was shown that forecasting the considered aftershock sequences based on the data for the previous times has an adequate accuracy. This approach can be directly used in the work of seismic monitoring centers for estimating aftershock activity after a strong earthquake.

Keywords: Altai-Sayan Fold System, the Tuva earthquake, aftershocks, modeling and forecasting aftershock processes.

 

References

Akaike, H., A new look at the statistical model identication, IEEE Transactions on Automatic Control, 1974, vol. 19, no. 6, pp. 716–723.

Benioff, H., Earthquakes and rock creep: (Part I: Creep Characteristics of Rocks and The Origin of Aftershocks), Bull. Seismol. Soc. Amer., 1951, vol. 41, no 1, pp. 31–62.

Daley, D.J. and Vere-Jones, D., A summary of the theory of point processes. In Stochastic Point Processes: Statistical Analysis, Theory and Applications / Ed. Lewis P.A.W. New York, Wiley, 1972. pp.299–383.

Emanov, A.F., Emanov, A.A., and Leskova, E.V., Seismic activizations in Bellin-Busingol zone, Fizicheskaya mezomekhanika (Physical mezomechanics), 2010, no. 13, pp. 72-77.

Emanov, A.F., Emanov, A.A., Leskova, E.V., Kolesnikov, Yu.I., and Rudakov, A.D., General and individual development of aftershock processes in the Altai-Sayan Mountain region, 2006, no. 1, pp. 33–44.

Emanov, A.F., Emanov, A.A., Leskova, E.V., Seleznev, V.S., and Filina, A.G., Tuva earthquake of December 27, 2011 and its aftershocks, Vestnik ONZ RAN, vol. 4, NZ2002, onznews. wdcb.ru/publications/v04/2012NZ000113/2012NZ000113.pdf

Geologia SSSR (Geology of the USSR), vol.29: Tuvinskaya ASSR (The Tuva ASSR), Moscow: Nedra, 1966.

Geological and geophysical study of the eastern part of Altai-Sayan seismic zone towards seismic safety assessment of sites of strategic value (hydroelectric power stations, mining-chemical combines, industrial areas), Inform. otchet o NIR (Informational report on research works), coordinator V.А. Ogienko, Krasnoyarsk, KNIIGiMS, 1999.

German, V.I. and Oseev, V.G., Central and southern regions of the Krasnoyarsk krai, Zemletryaseniya Rossii v 2010 (Earthquakes of Russia in 2010), Obninsk: GS RAS, 2011, pp. 82–84.

German, V.I., Application of methods of nonparametric statistics for studies of seismic activity, Materialy 4 mezhdunaronoi seismologicheskoi shkoly (Proc. 4th  Int. Seismological School), Obninsk: GS RAS, 2009, pp. 48-53.

Gross, S.J. and Kisslinger, C., Tests of models of aftershock rate decay, Bull. Seismol. Soc. Amer., 1994, vol. 84, no. 5, pp. 1571–1579.

Kisslinger, C., The Stretched Exponential Function as an Alternative Model for Aftershock Decay Rate, J. Geophys. Res., 1993, vol. 98, no B2, pp. 1913–1921.

Leonard, T. and Hsu, J.S.J., Bayesian Methods, An analysis for statisticians and interdisciplinary researchers. Cambridge: Univ. Press, 1999.

Liptser R.Sh. and Shiryaev, A.N., Statistika sluchainykh processov (Statistics of random processes), Moscow: Nauka, 1974.

Michelson, A.A., Elastic Viscous Flow. Part I, J. Geology, 1917, vol. 25, pp. 405–410.

Molchan, G.M. and Dmitrieva, O.E., Identification of aftershocks: review and new approaches, Vychislitel’naya seismologiya (Computational seismology), 1991, no. 24, pp. 19-50.

Narteau, C., Shebalin P., and Holschneider M., Temporal limits of the power law aftershock decay rate, J. Geophys. Res., 2002, vol. 107, no. B12, doi:10.1029/2002JB001868.

Ogata, Y., Matsu'ura, R.S., and Katsura, K., Fast likelihood computation of Epidemic Type Aftershock-Sequence Model, Geophys. Res. Lett., 1993, vol. 20 (19), pp. 2143–2146.

Ogata, Y., Statistical model for standard seismicity and detection of anomalies by residual analysis, Tectonophysics, 1989, vol. 169, pp. 159–174.

Riznichenko, Yu.V. Sizes of the crustal earthquake source and seismic moment, Issledovaniya po fizike zemletryasenii (Studies of the physics of earthquakes), Moscow: Nauka, 1976, pp. 9-27.

Rudnev, S.N., Vladimirov, A.G., Ponomarchuk, V.A., Bibikova, E.V., Sergeev, S.A, Matukov, D.I., Plotkina, Yu.V. and Bayanova, T.B. Kaahem polychromous granitoid batholith (Eastern Tuva): composition, age, sources and geodynamic position, Litosfera (Lithosphere), 2006, no. 2, pp. 3-33.

Scholz, C. Microfractures, aftershocks, and seismicity, Bull. Seismol. Soc. Amer., 1968, vol. 58, pp. 1117–1130.

Smirnov, V.B., Prognostic anomalies of seismic regime. I. Methodical basis of initial data preparation, Geofizicheskie issledovaniya, 2009, vol. 10, no.2, pp. 7-22.

Ulomov, V.I. and Shumilina, L.S., in Set of Maps of the General Seismic Zoning of the Territory of the Russian Federation, OSR-97. Scale 1:8000000. Explanatory Note and the List of Cities and Populated Areas, Located in Earthquake-Hazard Regions (Institute of Physics of the Earth, Russian Academy of Sciences (OIFZ), Moscow, 1999b) pp. 1–57.

Utsu, T., A statistical study on the occurrence of aftershocks, Geophys. Magazine, 1961, vol. 30, pp. 521–605.