Frequency structure of IAR spectral bands and ionosphere parameters

Category: 16-2
T.N. Polyushkina, B.V. Dovbnya, A.S. Potapov, B. Tsegmed, R.A. Rakhmatulin

UDC 550.385.37+550.383

 

 

 

T.N. Polyushkina1, B.V. Dovbnya2, A.S. Potapov1, B. Tsegmed1,3, R.A. Rakhmatulin1

 

1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia

2 Borok Geophysical Observatory of Institute of Physics of the Earth RAS, Borok, Yaroslavl region, Russia

3 Research Center for Astronomy and Geophysics MAS, Ulaan-Baator, Mongolia

 

Abstract. Continuous magnetic observations of IAR emission at the mid-latitude Mondy observatory performed by a search-coil magnetometer LEMI-30 within the period from March 2010 to May 2011 have been analyzed and compared with the results of simultaneous ionosphere sounding. We have studied the morphology of IAR emission and analyzed its relationships with other phenomena and ionospheric parameters. A large amount of observational data allowed us to follow daily and seasonal variations of this relationship which had not been sufficiently studied before. The main factor affecting the duration of the emission is the length of the shading of the lower ionosphere. We have demonstrated a good correlation of diurnal and seasonal IAR frequency variations with the changes in critical frequency f0F2 of the ionosphere. An attempt has been made to simulate diurnal variation of IAR frequency by calculating expected frequency scales of emission using the IRI-2012 model. The results show good agreement with the measurements, but contain systematic and random errors. We discuss the sources thereof.

 

Keywords: ionospheric Alfven resonator, ionosphere critical frequency f0F2, morphological characteristics, IRI-2012 model.

References

Barou, N.A., Koloskov, A.V., and Rahmatulin R.A., Multipositional observations of the Alfvèn ionospheric resonance signals, Proc. First Ukrainian conference “Electromagnetic methods of space environment research” (Kharkov, 25-27 Sept. 2012), Kharkov, 2012, pp. 150-152.

Belyaev, P.P., Polyakov, S.V., Rapoport, V.O., and Trakhtengerz, V.Yu., Detecting resonance structure of the spectrum of atmospheric electromagnetic ambient noise in the range of short-period geomagnetic pulsations, Doklady Akademii Nauk SSSR, 1987, vol. 297, no. 3, pp. 840-843.

Belyaev, P.P., Polyakov, S.V., Rapoport, V.O., and Trakhtengerz, V.Yu., Theory of forming resonance structure of the spectrum of atmospheric electromagnetic ambient noise in the range of short-period geomagnetic pulsations, Izvestiya VUZov. Radiofizika, 1989, vol. 32, no. 7, pp. 802-810.

Belyaev, P.P., Polyakov, S.V., Ermakova, E.N., and Isaev, S.V., Experimental investigations of the Alfvèn ionospheric resonance based on electromagnetic ambient noise in the 1985-1995 solar cycle, Radiofizika, 1997, vol 40, no. 10, pp. 1305-1319.

Belyaev P.P., Polyakov S.V., Rapoport V.O., and Trakhtengerts V.Y. The ionospheric Alfvén resonator, J. Atmos. Solar-Terr. Phys. 1990, vol. 52(9), pp. 781–788.

Belyaev P.P., Bösinger T., Isaev S.V., and Kangas J. First evidence at high latitudes for the ionospheric Alfvén resonator, J. Geophys. Res. 1999, vol. 104, pp. 4305–4317. doi: 10.1029/1998JA900062.

Bösinger T., Haldoupis C., Belyaev P.P., Yakunin M.N., Semenova N.V., Demekhov A.G., and Angelopoulos V. Spectral properties of the ionospheric Alfven resonator observed at a low-latitude station (L=1.3), J. Geophys. Res. 2002, vol. 107(A10). 1281. doi: 10.1029/2001JA005076.

Bösinger T., Demekhov A.G., and Trakhtengerts V.Y. Fine structure in ionospheric Alfvèn resonator spectra observed at low latitude (L=1.3), Geophys. Res. Lett. 2004, vol. 31. L18802. doi: 10.1029/2004GL020777.

Chaston C.C., Bonnell J.W., Carlson C.W., Berthomier M., Peticols L.M., Roth I., McFadden J.P., Ergun R.E., and Strangeway R.J. Electron acceleration in the ionospheric Alfvén resonator, J. Geophys. Res. 2002, vol. 107(A11), pp. 1413. doi: 10.1029/2002JA009272.

Demekhov A.G., Belyaev P.P., Isaev S.V., Manninen J., Turunen T., and Kangas J. Modeling the diurnal evolution of the resonance spectral structure of the atmospheric noise background in the Pc1 frequency range, J. Atmos. Sol. Terr. Phys. 2000, vol. 62, pp. 257–265. doi: 10.1016/S1364-6826(99)00119-4.

Dmitrienko I.S. Evolution of FMS and Alfven waves produced by the initial disturbance in the FMS waveguide, J. Plasma Phys. 2013, vol. 79, issue 01, pp. 7–17. doi: 10.1017/S0022377812000608.

Dovbnya, B.V., Guglielmi, A.V., Potapov, A.S., and Klain, B.I., On the existence of the super-ionospheric Alfvèn resonance, Solnechno-zemnaya fizika, 2013, issue 22, pp. 12-15.

Dovbnya B.V., Guglielmi A.V., Potapov A.S., and Rakhmatulin R.A. An additional resonator for ultralow frequency waves, Geophys. Res. Journal, 2013b, vol. 14, no. 2, pp. 49–58.

Dovbnya B.V., Potapov A.S., and Rakhmatulin R.AEarthquake effects in  the pulsations of geomagnetic field, Proceedings of the 8th Int. Conf. Problems of Geocosmos (St. Petersburg, Russia, 20-24 Sept. 2010). 2010, pp.403407.

Ermakova, E.N., Polyakov, S.V., and Semyonova, N.V., Investigation of the fine structure in the spectrum of the ambient low frequency noise at mid-latitudes, “Physics of Auroral Phenomena”, Proc. XXXIV Annual Seminar, Apatity. Kola Science Centre, RAS, 2011.  pp. 147–150.

Ermakova E.N., Kotik D.S., and Polyakov S.V. Studying specific features of the resonance structure of the background noise spectrum in the frequency range 1−10 Hz with allowance for the slope of the Earth’s magnetic field, Radiophysics and Quantum Electronics. 2008, vol. 51(7), pp. 519–527.

Guglielmi A., Potapov A., Tsegmed B., Hayakawa M., and Dovbnya B. On the earthquake effects in the regime of ionospheric Alfvén resonances, Phys. Chem. Earth. 2006, vol. 31, pp. 469–472.

Guglielmi A.V. and Potapov A.S., The effect of heavy ions on the spectrum of oscillations of the magnetosphere, Cosmic Research, 2012, vol. 50, no. 4, pp. 263-271

Hebden S.R., Robinson T.R., Wright D.M., Yeoman T., Raita T., and Bösinger T. A quantitative analysis of the diurnal evolution of Ionospheric Alfvén resonator magnetic resonance features and calculation of changing IAR parameters, Ann. Geophys. 2005, vol. 23, pp. 1711–1721.

Klimushkin D.Yu., Mager P.N., and Marilovtseva O.S. Parallel structure of Pc1 ULF oscillations in multi-ion magnetospheric plasma at finite ion gyrofrequency, J. Atmos. Sol. Terr. Phys. 2010, v. 72, N 18, pp. 1327–1332. doi: 10.1016/j.jastp.2010.09.019,

Leonovich A.S., Kozlov D.A., and Cao J.B.  Standing Alfvén waves with m >> 1 in a dipole magnetosphere with moving plasma and aurorae, Adv. Space Res. 2008, v. 42, pp. 970–978.

Leonovich A.S., Kozlov D.A., and Edemskiy I.K. Standing slow magnetosonic waves in a dipole-like plasmasphere, Planet. Space Sci. 2010, v. 58, Issue 11, pp. 1425–1433

Lysak R.L. Feedback instability of the ionospheric resonator cavity, J. Geophys. Res. 1991, v. 96, no. A2, pp. 1553–1568.

Lysak R.L. Magnetosphere-ionosphere coupling by Alfvén waves at midlatitudes, J. Geophys. Res. 2004, v. 109, A07201. doi: 10.1029/2004JA010454.

Lysak R.L. and Yoshikawa A. Resonant cavities and waveguides in the ionosphere and atmosphere, in Magnetospheric ULF Waves, Geophys. Monogr. Ser, vol. 169 / Ed. K. Takahashi et al. AGU, Washington, D. C., 2006, pp. 289–306.

Mazur V.A. and Leonovich A.S. ULF hydromagnetic oscillations with the discrete spectrum as eigenmodels of MHD-resonator in the near-Eath part of the plasma sheet, Ann. Geophys. 2006, vol. 24, no. 6, pp. 1639–1648.

Molchanov O.A., Schekotov A.Yu., and Fedorov E., and Hayakawa M. Ionospheric Alfven resonance at middle latitudes: results of observations at Kamchatka, Phys. Chem. Earth. 2004, vol. 29, pp. 649–655.

Parent A., Mann I.R., and Rae I.J. Effects of substorm dynamics on magnetic signatures of the ionospheric Alfvén resonator, J. Geophys. Res. 2010, v.115, A02312, doi: 10.1029/2009JA014673.

Pokhotelov O.A., Khruschev V., Parrot M., Senchenkov S., and Pavlenko V.P. Ionospheric Alfvén resonator revisited: Feedback instability, J. Geophys. Res. 2001, v. 106, pp. 813.

Polyakov, S.V. and Rapoport, V.O., The ionospheric Alfven resonator, Geomagn. Aeron., 1981, vol. 21, pp. 610–614.

Potapov, A.S., Dovbnya, B.V., and Tsegmed, B.O., Earthquake Impact on Ionospheric Alfven Resonances, Izv, Phys. Solid Earth, 2008, vol. 44, no. 4, pp. 346–349.

Shalimov S. and Bösinger T. On distant excitation of the ionospheric Alfvén resonator by positive cloud to ground lightning discharges, J. Geophys. Res. 2008, vol. 113, A02303. doi:  10.1029/2007 JA012614.

Streltsov A.V. and Karlsson T. Small scale, localized electromagnetic waves observed by Cluster: Result of magnetosphere-ionosphere interactions, Geophys. Res. Lett. 2008, vol. 35, L22107. doi: 10.1029/2008GL035956.

Tepley L. and Landshoff  R.K. Waveguide theory for ionospheric propagation of hydromagnetic emissions, J. Geophys. Res. 1966, vol. 71(5), pp. 1499–1504. doi: 10.1029/JZ071i005p01499. 

Yahnin A.G., Semenova N.V., Ostapenko A.A., Kangas J., Manninen J., and Turunen T. Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1–4 Hz at L = 5.2, Ann. Geophys. 2003, vol. 21, pp. 779–786.