Paleomagnetic Secular Variations: statistical properties of real data
Category: 15-4
UDC 550.384.3, 519.246.3, 519.258
A.V. Khokhlov
Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Earth, RAS,
Moscow, Russia
Abstract. To understand the nature of the paleomagentic field variations a mathematically rigorous method of testing statistical hypotheses on real paleomagnetic data is required. The lava paleomagnetic data are sparse in time and space, and contain only partial and inaccurate information about the ancient magnetic field vectors. Theoretical descriptions of field variations operate the global parameters that related to the expansion coefficients of the magnetic potential in spherical harmonics (i.e. Gauss coefficients); such a global description allows to specify the vector field at any point of the earth's surface.
An accurate calculation of the field potential is not achievable from only small, set of data fields (for instance, when all the data belong to one region) so a direct comparison between the observable gauss coefficients and the theoretic ones (that is, from a statistical hypothesis of secular variations) seem difficult. The more appropriate question: whether the globally modeled field is compatible with the paleodirections from different site locations. Here the compatibility should be treated in statistical sense and the direct implementation of this test is sophisticated as the directions are not the numerical values and therefore the usual statistical approach fails. This article presents the new method of testing the consistency of paleomagnetic secular variations and paleomagnetic data, together with the results of application to Brunhes paleomagnetic real data
Keywords: paleomagnetism, paleosecular variations, Gaussian random process, statistics on spheres.
References
Bingham C., Distributions on sphere and on the projective plane, Ph. D. thesis, Yale Univ. New Haven, 1964, 152 p.
Bingham C. A series expansion for angular gaussian distribution, Watson G.S. (ed.). Statistics on spheres, N-Y.: John Wiley&Sons, 1983, pp. 226–231.
Bouligand C., Hulot G., Khokhlov A., and Glatzmaier G.A. Statistical paleomagnetic field modelling and dynamo numerical simulation, Geophys. J. Int., 2005, vol. 161, pp. 603–626. DOI: 10.1111/j.1365-246X.2005.02613.x.
Constable C.G. and Parker R.L. Statistics of the geomagnetic secular variation for the past 5 m.y., J. Geophys. Res., 1988, vol. 93 (B10), pp. 11569–11581.
Elmaleh A., Valet J.-P., Quidelleur X., Solihin A., Bouquerel H., Tesson T., Mulyadi E., Khokhlov A., and Wirakusumah A.D., Palaeosecular variation in Java and Bawean Islands (Indonesia) during the Brunhes chron, Geophys. J. Int., 2004, vol. 157, pp. 441–454. DOI: 10.1111/j.1365-246X. 2004.02197.x
Fasano G. and Franceschini A., A multidimensional version of the Kolomogorov-Smirnov test, Mon. Not. R. Astron. Soc., 1987, vol. 225. (1), pp. 155–170.
Fisher R. Dispersion on a sphere, Proc. R. Soc. Lond. A. 1953, vol. 217. 1130, pp. 295–305. DOI: 10.1098/rspa.1953.0064
Fisher N., Lewis T., Embleton B., Statistical analysis of spherical data, Cambridge University Press, 1987, 352 p.
Khokhlov A.V., Modeling of paleosecular magnetic variations. Principles and relization, Geophys. Res. Journal, 2012, vol. 13, no 2, pp. 50–61.
Khokhlov A. and Hulot G., Probability uniformization and application to statistical palaeomagnetic field models and directional data, Geophys. J. Int., 2013, vol. 193, no. 1, pp. 110–121. DOI: 10.1093/ gji/ggs118.
Khokhlov A., Hulot G., and Carlut J., Towards a self-consistent approach to palaeomagnetic field modelling, Geophys. J. Int., 2001, vol. 145, no. 1, pp. 157–171. DOI: 10.1111/j.1365-246X.2001.01386.x.
Khokhlov A., Hulot G., and Bouligand C., Testing statistical palaeomagnetic field models against directional data affected by measurement errors, Geophys. J. Int., 2006, vol. 167, no. 2, pp. 635–648. DOI: 10.1111/j.1365-246X.2006.03133.x.
Kono M. and Tanaka H., Mapping the Gauss coefficients to the pole and the models of paleosecular variation, J. Geomag. Geoelectr., 1995, vol. 47, pp. 115–130.
Kuiper N.H., Tests concerning random points on a circle, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. A. 1960, vol. 63, pp. 38–47.
Love J.J. and Constable C.G., Gaussian statistics for palaeomagnetic vectors, Geophys. J. Int., 2003, vol. 152, no. 3, pp. 515–565. DOI: 10.1046/j.1365-246X.2003.01858.x.
Press C., Teukolsky S., Vetterling W., and Flannery B., Numerical Recipes in C++. Third edition. 2007. www.nr.com.
Quidelleur X. and Courtillot V., On low-degree spherical harmonic models of paleosecular variation, Phys. Earth Planet. Int., 1996, vol. 95, no. 1-2, pp. 55–77. DOI: 10.1016/0031-9201(95)03115-4.
Quidelleur X., Valet J.-P., Courtillot V., and Hulot G., Long-term geometry of the geomagnetic field for the last five million years: an updated secular variation database, Geophys. Res. Lett., 1994, vol. 15, pp. 1639–1642. DOI: 10.1029/94GL01105.
Rozenblatt M., Remarks on a Multivariate Transformation, Ann. Math. Statist., 1952, vol. 15, no. 3, pp. 470–472.
Tauxe L. Essentials of paleomagnetism. 2009. magician.ucsd.edu/essentials/WebBook.html.
Wilson R.L., Permanent aspects of the Earth’s non-dipole magnetic field over upper Tertiary times, Geophys. J. Roy. Astron. Soc., 1970, vol. 19, pp. 417–437. DOI: 10.1111/j.1365-246X.1970. tb06056.x.
Wilson R.L., Dipole offset-the time-averaged paleomagnetic field over the past 25 million years, Geophys. J. Roy. Astron. Soc., 1971, vol. 22, pp. 491–504.
Wilson R.L., Paleomagnetic differences between normal and reversed field sources, and the problem of far-sided and right-handed pole positions, Geophys. J. Roy. Astron. Soc. 1972, vol. 28, pp. 295–304.