On mechanism of vertical transport of metallic ions and atoms in the upper mesosphere–lower thermosphere

Category: 13-4
O.G. Chkhetiani, S.L. Shalimov

 

UDC 550.385+532.526

 

 

O.G. Chkhetiani(1,2), S.L. Shalimov(2,3)

 

(1) Obukhov Institute of Physics of the Atmosphere, Russian Academy of Sciences,

Moscow, Russia

(2) Space Research Institute, Russian Academy of Sciences, Moscow, Russia

(3) Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

 

Abstract

Transport properties of secondary vortex structures developed in the range of the upper mesosphere-lower thermosphere are considered. The development of the vortex structures with many scales in the lower ionosphere can result in intensive thermal and mass transfer. These processes can influence considerably the recirculation of the metallic ions and atoms accumulated just at the same altitude range by thermal tides.

Keywords: mesosphere, lower thermosphere, Ekman-type instability, vortex structures, transport of metallic ions and atoms

 

References

Baggaley, W.J., Radar observations, Meteors in the Earth’s Atmosphere, Eds. E. Murad, I.P. Williams. Cambridge: Cambridge University Press, 2002, pp. 123–148.

Bishop, R.L., Earle, G.D., Larsen, M.F., Swenson, C.M., Carlson, C.G., Roddy, P.A., Fish, C., and Bullett, T.W., Sequential observations of the local neutral wind field structure associated with E region plasma layers, J. Geophys. Res., 2005, vol. 110, A04309, doi: 10.1029/2004JA010686.

Brown, R.A., Analytic Methods in Planetary Boundary Layer Modeling, London: Adam Hilger LTD, New York: John Wiley and Sons, 1974.

Chabrillat, S., Kockarts, G., Fonteyn, D., and Brasseur, G., Impact of molecular diffusion on the CO2 distribution and the temperature in the mesosphere, Geophys. Res. Lett., 2002, vol. 29, pp. 1729–1733.

Chkhetiani O.G., On spiral structure of the Ekman boundary layer, Fizika atmosfery I okeana, 2001, vol. 37, no. 5, pp. 614–620.

Chkhetiani, O. G. and Shalimov, S. L., Helicity in the upper atmosphere and Ekman-type instabilities, Doklady Earth Sci, 2010, vol. 431, no. 1, pp. 345-350

Chou, S.H. and Ferguson, M.P., Heat fluxes and roll circulation over the western gulf stream during an intense cold air outbreak, Bound. Layre Meteor, 1991, vol. 65, pp. 215–228.

Chu, Y.H., Su, C.L., Larsen, M.F., and Chao, C.K., First measurements of neutral wind and turbulence in the mesosphere and lower thermosphere over Taiwan with chemical release experiment, J. Geophys. Res., 2007, vol. 112, A02301, doi: 10.1029/2005JA011560.

Chukbar K.V., Lektsii po yavleniyam perenosa v plasme (Lectures on transport phenomena in plasma), Dolgoprudny: ID Intellekt, 2008, 257 p.

Clemesha, B.R., Simonich, D.M., Batista, P.P., and Kirchhoff V., The Diurnal-Variation of Atmospheric Sodium, J. Geophys. Res., 1982, vol. 87, pp. 181–186.

Cox, R.M. and Plane, J.M., An ion-molecule mechanism for the formation of neutral sporadic Na  layers, J. Geophys. Res., 1998, vol. 103, pp. 6349–6360.

Cziczo, D.J., Thomson, D.S., and Murphy, D.M., Ablation, flux, and atmospheric implications of meteors inferred from stratospheric aerosol, Science, 2001, vol. 291, pp. 1772–1775.

Faller, A.J. and Kaylor, R., Instability of the Ekman spiral with application to the planetary boundary layer, Phys. Fluids, 1967, vol. 9, pp. 212–220.

Fritts, D.C., Bizon, C., Werne, J.A., and Meyer, C.K., Layering accompanying turbulence generation due to shear instability and gravity-wave breaking, J. Geophys. Res., 2003, vol. 108, no. D8, pp. PMR 20-1, CiteID 8452, DOI 10.1029/2002JD002406

Gerding, M., Alpers, M., von Zahn, U., Rollason, R.J., and Plane, J. M., The atmospheric Ca and Ca+ layers: Midlatitude observations and modeling, J. Geophys. Res., 2000, vol. 105, pp. 27131–27146.

Hocking, W., Turbulence in the region 80–120 km, Adv. Space Res., 1990, vol. 10, pp. 153–161.

Hocking, W.K., The dynamical parameters of turbulence theory as they apply to middle atmosphere studies, Earth Planets Space, 1999, vol. 51, no. 7/8, pp. 525–541.

Hughes, D.W., Meteors and cosmic dust, Endeavour, 1997, vol. 21, pp. 31–35.

Hughes, D.W., Meteors, Cosmic Dust, Ed. J. A. M. McDonnell. London: Wiley, 1978.

Hysell, D.L., Larsen, M.F., and Zhou, Q.H., Common volume coherent and incoherent scatter radar observations of mid-latitude sporadic E layers and QP echoes, Ann. Geophys., 2004, vol. 22, pp. 3277–3287.

Kelley, M.C., The Earth's ionosphere: Plasma Physics and Electrodynamics. San Diego, Calif.: Academic Publ. Comp., 1989.

Larsen, M.F., Hysell, D.L., Zhou, Q.H., Smith, S.M., Friedman, J., and Bishop, R.L., Imaging coherent scatter radar, incoherent scatter radar, and optical observations of quasiperiodic structures associated with sporadic E layers, J. Geophys. Res., 2007, vol. 112, no. A6, CiteID A06321.

Larsen, M.F., Liu, A.Z., Gardner, C.S., Kelley, M.C., Collins, S., Friedman, J., and Hecht, J.H., Observations of overturning in the upper mesosphere and lower thermosphere, J. Geophys. Res., 2004, vol. 109, D02S04, doi: 10.1029/2002JD003067.

Larsen, M.F., Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements, J. Geophys. Res., 2002, vol. 107, no. A8, 1215, SIA 28-1–28-29.

Lilly, D.K., On the instability of Ekman boundary flow, J. Atm. Sci., 1966, vol. 23, pp. 481–494.

Majda, A.J., and Kramer, P.R. Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Physics Reports, 1999, vol. 314, pp. 237–574.

Mathews, J.D., Janches, D., Meisel, D.D., and Zhou, Q.H., The micrometeoroid mass flux into the upper atmosphere: Arecibo results and a comparison with prior estimates, Geophys. Res. Lett., 2001, vol., 28, pp. 1929–1932.

McBride, N., Green, S.F., and McDonnell, J.A.M., Meteoroids and small sized debris in Low Earth Orbit and at 1 au: Results of recent modeling, Adv. Space Res., 1999, vol. 23, pp. 73–82.

Mikhailova, L.A. and Ordanovich, A E., Izv. AN SSSR, Fiz. Atm. Okeana, 1991, vol. 27, pp. 593–613.

Osipenko M.V., Pogutse O.P., Chudin N.V., Diffusion of plasma on the vortex lattice, Fizika plasmy, 1987, vol. 13, pp. 935-960.

Plane, J.M., A time-resolved model of the mesospheric Na layer: constraints on the meteor input function, Atm. Chem. Phys., 2004, vol. 4, pp. 627–638.

Ponomarev V.M., Chkhetiani O.G., Shestakova L.V., Nonlinear dynamics of large-scale vortices in the turbulent Ekman layer, Mehanika zhidkosti i gaza, 2007, no. 4, pp. 72-82.

Rosenberg, N., Dynamic model of ionospheric wind profiles, J. Geophys. Res., 1968, vol. 73, no. 15, pp. 4965–4968.

Rosenbluth, M.N., Berk, H.L., Doxas, I., and Horton, W., Effective diffusion in laminar convective flows, Phys. Fluids, 1987, vol. 30, no. 9, pp. 2636–2647.

Self, D.E. and Plane J.M.C., Absolute photolysis cross-sections for NaHCO3, NaOH, NaO, NaO2 and NaO3: implications for sodium chemistry in the upper mesosphere, Phys. Chem., 2002, vol. 4, pp. 16–23.

Thrane, E.V. and, Grandal, B., Observation of fine scale structure in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 1981, vol. 43, no. 3, pp. 179–189.

Thrane, E.V., Blix, T.A., Hall, C., Hansen, T.L., Von Zahn, U., Meyer, W., Czechowsky, P., Schmidt, G., and Widdel, H.U., Small scale structure and turbulence in the mesosphere and lower thermosphere at high latitudes in winter, J. Atmos. Terr. Phys., 1987, vol. 49, no. 7/8, pp. 751–762.

Wasson, J.T. and Kyte, F.T., On the Influx of Small Comets into the Earths Atmosphere, 2. Interpretation – Comment, Geophys. Res. Lett., 1987, vol. 14, pp. 779–780.