Finite-element technologies of interpretation of gravity data. Assembly method

Category: 13-3
P.I. Balk, A.S. Dolgal’, T.V. Balk, L.A.Christenko

 

UDC 550.831

 

 

P.I. Balk(1), A.S. Dolgal’(2), T.V. Balk(1), L.A.Christenko(2)

 

(1) Berlin, Germany

(2) Mining Institute Ural Branch Russian Academy of Sciences, Perm, Russua

 

Abstract

In this paper we emphasize main stages and summarize the evolution of finite-element approach to quantitative interpretation of gravity data. Authors have chosen the assembly technologies of inverse problem solutions among known developments as the most suitable for simultaneous accounting of different a priory physical-geological data about modeled objects and additional information about noise properties in observed fields. It is accentuated that according to the set of characteristics these assembly algorithms can be viewed as a principally new generation of minimization methods which are used in geophysics to study the form and attitude position of field sources.

We provide the most comprehensive description of the assembly method as compared to the already published specifications. Various iterative search schemas of allowable solutions of inverse gravity problem and examples of specific techniques of the accounting of a priory limits on parameters of the model of field sources are indicated in this article. It is the first investigation of the possibility  to apply the ideas of assembly approach to the class of hybrid inverse problems with interval assignment of the rock density value for the studied geological objects. Authors present a model and practical examples of 3D modeling of gravity field sources with the use of assembly algorithms.

Keywords: gravitational exploration, finite-element approach, assembly method, modeling, algorithm, geological objects.

 

References

Bakhvalov, N.S., Zhdanov, N.P., and Kobelkov, G.M., Chislennye metody (Numerical methods), Moscow: BINOM, 2006, 636 p.

Balk, P.I., Balk, S.P., On solving the non-linear inverse gravimetry problem using finite-element representations of field sources, Dokl. RAN, 2000, vol. 371, no. 2, pp. 231–234.

Balk, P.I., Balk, T.V., Combined inverse gravimetry problem, Fizika Zemli, 1996, no. 2, pp. 16–30.

Balk, P.I., Balk, T.V., Structural ore inverse gravimetry problem, Fizika Zemli, 1995, no. 6, pp. 32–41.

Balk, P.I., Balk, T.V., The structure of minimized functional in assembly method of the search for admissible solutions of the inverse gravimetry problem, Fizika Zemli, 1994, no. 7/8, pp. 98–106.

Balk, P.I., Dolgal, A.S. and Khristenko, L.A., Synthesis of linear and non-linear formulation of the inverse problem in gravimetric and magnetic survey, Geofizichesky zhurnal, 2011, vol.  33,  no. 5, pp. 51–65.

Balk, P.I., Dolgal, A.S., Three-dimensional assembly technologies for the interpretation of gravimetric data, Dokl. Earth Sci., 2009, vol. 427, no. 2, pp. 971-974

Balk, P.I., On Reliability of the Results of Quantitative Interpretation of Gravity Anomalies, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1980, no. 6, pp. 65–83.

Balk, P.I., The problem of parametrization and reliability of nonlinear inverse problem of gravimetry, Fizika Zemli, 1997, no. 10, pp. 14–32.

Balk, P.I., The Use of A Priori Information on the Topology of the Field Sources in the Solution of the Inverse Problem of Gravimetry, Dokl. Akad. Nauk, 1989, vol, 309, no. 5, pp. 1082–1084.

Balk, P.I., The Use of A Priori Information on the Topology of the Field Sources in the Solution of the Inverse Problem of Gravimetry in the Framework of Assembly Solution, Fiz. Zemli, 1993, no. 5, pp. 59–71.

Balk, T.V. and Schäfer, U., Assembly method of solving the combined inverse problem in gravimetry and magnetic survey, Dokl. RAN, 1992, vol. 327, no. 1, pp. 79–83.

Balk, T.V., Novoselova, M.R., Balk, P.I. and Turutanov, E.H., On accuracy of defining the bottom boundary of a geological object based on gravimetry data, Izv. AN SSSR, Fizika Zemli, 1988, no. 3, pp. 81–88.

Blokh, Yu.I., The Problem of Adequacy of the Interpretation Models in Gravimetry and Magnetometry, Geofiz. Vestn., 2004, no. 6, pp. 10–15.

Bulakh, E.G. and Korchagin, I.N., On retrieval of anomalous sources of the gravitational field by subsequent increments of the model, Dokl. AN USSR, ser. B, 1978, pp. 1059–1062.

Cormen, T., Leiserson, Ch., Rivest, R., Introduction to algorithms, Moscow: MTsMNO, 2005, 1290 p. (in Russian)

Dolgal, A.S. and Michurin, A.V., New modification of the assembly method for solving the non-linear inverse problem of gravimetry, Uralsky geofizichesky vestnik, no. 2 (17), 2010, pp. 34–40.

Dolgal, A.S., The Solution of the Inverse Problem of Gravimetry in the Copper-Nickel Ore Prospecting, Geofiz. Zh., 1993, no. 6, pp. 83–88.

Dyadura, V.A. and Shalayev, S.V., Defining locations of geological objects using gravitational anomalies, Voprosy razvedochnoy geofiziki, 1968, issue 8, pp. 31–36.

Evtushenko, Yu.G., Metody resheniya extremalnyh zadach i ih prilozheniye v sistemah optimizatsii (Methods of solving extremum problems and their application in optimization systems), Moscow, 1982, 432 p.

Kantorovich, L.V., On certain new approaches to computational methods and observation processing, Sibirsky matematichesky zhurnal, 1962, vol. 3, no. 5, pp. 701–709.

Kobrunov, A.I., Matematicheskiye osnovy teorii interpretatsii geofizicheskih dannyh: uchebnoye posobie (Mathematical basis for interpreting geophysical data: a textbook), Moscow: TsentrLitNefteGaz, 2008, 288 p.

Kosygin, Yu.A., Osnovy tektoniki (Fundamental tectonics), Moscow: Nedra, 1974, 216 p.

Lomtadze, V.V., Interpretation of gravitational anomalies by equivalent prismas, Voprosy razvedochnoy geofiziki, 1968, issue 8, pp. 36–40.

Ovcharenko, A.V., Podbr secheniy dvuhmernogo tela po gravitatsionnomu polyu (Proportioning of sections of a two-dimensional object over the gravity field), Voprosy neftyanoy i rudnoy geofiziki, Alma-Ata: Izd-vo Kazakhskogo politekh. in-ta, 1975, issue 2, pp. 71–75.

Perfilyev, L.G., Some questions of processing and interpreting geological and geophysical data using electronic digital computers, Avtoref. diss. kand. tekh. nauk, Moscow, 1972, 28 p.

Prutkin, I.L., On solving the three-dimensional inverse problem of gravimetry in the contact surface class by local corrections approach, Izv. AN SSSR, Fizika Zemli, 1986, no. 1, pp. 67–77.

Schäfer, U. and Balk P., The Inversion of Potential Field Anomalies by the Assembling Method: The Third Dimension, Proc. IAG Symp. № 112, Berlin-Heidelberg: Springer-Verlag, 1993, pp. 237–241.

Schäfer, U., Die Lösung einer inversen Aufgabe für gravimetrische und geomagnetische Anomalien mittels der Montagemethode, Potsdam. Zentralinstitut für Physik der Erde, 1990.

Shalayev, S.V., Geologicheskoye istolkovaniye geofizicheskih anomaliy s pomoshchyu lineynogo programmirovaniya (Geological interpretation of geophysical anomalies using linear programming), L: Nedra, 1972, 142 p.

Strakhov, V.N. and Lapina, M.I., Assembly method of solving the inverse problem of gravimetry, Dokl. AN SSSR, 1976, vol. 227, no. 2, pp. 344–347.

Trigubovich, G.M., Persova, M.G., and Soloveychik, Yu.G., 3D-elektrorazvedka stanovleniyem polya (3D transient electromagnetic survey), Novosibirsk: Nauka, 2009,  218 p.

Vakhromeev, G.S. and Davydenko, A.Yu., Modelirovanie v razvedochnoi geofizike (Modeling in Geoexploration), Moscow: Nedra, 1987.

Yunkov, A.A. and Bulakh, E.G., On accuracy of determining density of anomalous masses by grid method, Dokl. AN USSR, 1958, no. 11, pp. 1234–1237.

Zavoysky, V.N. and Neiszhal, Yu. E., Decomposition-iteration method of solving the inverse problem of magnetic survey, Geofizichesky zhurnal, 1979, vol. 1, no. 12, pp. 46–52.