Numerical modeling of SH-waves in an inhomogeneous inelastic Earth

Category: 15-2
V.Yu. Burmin, D.S. Kravtsov, I.V. Lukiyanov, A.G. Fatyanov

UDC 550.344

 

 

V.Yu. Burmin(1), D.S. Kravtsov(1), I.V. Lukiyanjv(1), A.G. Fatyanov(2)

 

(1) Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia

(2) Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia

 

Abstract. The paper considers an algorithm for the numerical modeling of the wave field in inhomogeneous inelastic Earth, constructed by using numerical-analytic method. The results of calculation of synthetic seismograms are represented.

 

Keywords: wave field, numerical modeling, inelastic Earth, seismic waves. 

 

References  

Birger I.A., Panovko Ya.G. Prochnost’, ustoichivost’, kolebaniya (Strenght, stability, vibrations), Handbook in three volumes, Moscow: Mashinostroenie, 1988.

Burmin V.Yu., Distributions of density and elastic parameters in the Earth, Izv. Phys. Solid Earth, 2006, vol. 42, No. 6, pp.608-620.

Fatyanov A.G., Chislennoe modelirovanie volnovykh polei v neodnorodnom uprugom share (Numerical simulation of wave fields in inhomogeneous inelastic sphere), 1981, Novosibirsk: VTs SO AN SSSR

Fatyanov A.G. and Mikhailenko B.G., Numerical solution of the Lamb's problem for an inhomogeneous Boltzmann medium with the elastic aftereffect, Matematicheskie metody geofizicheskikh nablyudenii (Mathematical methods of interpretation of geophysical observations), Novosibirsk, 1979.

Fatyanov A.G., Terekhov A.V. High-performance modeling acoustic and elastic waves using the Parallel Dichotomy Algorithm // J. Comp. Phys. 2011, vol. 230, pp. 1992–2003.

Levshin A.L., Poverkhnostnye i kanalovye seismicheskie volny (Surface and channel seismic waves), Moscow: Nauka, 1973.

Nadenik Z., Sharovye funktsii dlya geodezii (Spherical functions for geodesy), Moscow: MIIGAiK, 2010.

Samarskii A.A., Teoriya raznostnykh ckhem (The theory of deifference schemes), Moscow: Nauka, 1977.